年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏苏州高新区2021-2022学年中考数学最后一模试卷含解析

    江苏苏州高新区2021-2022学年中考数学最后一模试卷含解析第1页
    江苏苏州高新区2021-2022学年中考数学最后一模试卷含解析第2页
    江苏苏州高新区2021-2022学年中考数学最后一模试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏苏州高新区2021-2022学年中考数学最后一模试卷含解析

    展开

    这是一份江苏苏州高新区2021-2022学年中考数学最后一模试卷含解析,共18页。试卷主要包含了已知实数a、b满足,则等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知二次函数的图象如图所示,则下列说法正确的是( )

    A.<0 B.<0 C.<0 D.<0
    2.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为(  )
    A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)
    C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)
    3.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是(  )

    A.1 B.2 C.3 D.4
    4.关于反比例函数y=,下列说法中错误的是(  )
    A.它的图象是双曲线
    B.它的图象在第一、三象限
    C.y的值随x的值增大而减小
    D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
    5.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为(  )

    A.1:2 B.1:3 C.1:4 D.1:1
    6.已知实数a、b满足,则  
    A. B. C. D.
    7.对于两组数据A,B,如果sA2>sB2,且,则(  )
    A.这两组数据的波动相同 B.数据B的波动小一些
    C.它们的平均水平不相同 D.数据A的波动小一些
    8.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为( )

    A.(3 ,1) B.(3 ,2) C.(2 ,3) D.(1 ,3)
    9.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于(  )

    A.315° B.270° C.180° D.135°
    10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为______cm .

    12.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
    13.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.
    14.圆锥的底面半径为4cm,高为5cm,则它的表面积为______ cm1.
    15.如图,已知的半径为2,内接于,,则__________.

    16.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.

    17.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)先化简后求值:已知:x=﹣2,求的值.
    19.(5分)已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.
    (1)求实数k的取值范围;
    (2)写出满足条件的k的最大整数值,并求此时方程的根.
    20.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
    求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.
    21.(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
    求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
    22.(10分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:

    根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
    23.(12分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.
    (1)求该抛物线的解析式;
    (2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;
    (3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.

    24.(14分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.
    【详解】
    解:∵抛物线开口向上,
    ∴a>0,
    ∵抛物线交于y轴的正半轴,
    ∴c>0,
    ∴ac>0,A错误;
    ∵->0,a>0,
    ∴b<0,∴B正确;
    ∵抛物线与x轴有两个交点,
    ∴b2-4ac>0,C错误;
    当x=1时,y>0,
    ∴a+b+c>0,D错误;
    故选B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
    2、A
    【解析】
    分顺时针旋转,逆时针旋转两种情形求解即可.
    【详解】
    解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),

    故选A.
    【点睛】
    本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.
    3、C
    【解析】
    试题解析:∵图象与x轴有两个交点,
    ∴方程ax2+bx+c=0有两个不相等的实数根,
    ∴b2﹣4ac>0,
    ∴4ac﹣b2<0,
    ①正确;
    ∵﹣=﹣1,
    ∴b=2a,
    ∵a+b+c<0,
    ∴b+b+c<0,3b+2c<0,
    ∴②是正确;
    ∵当x=﹣2时,y>0,
    ∴4a﹣2b+c>0,
    ∴4a+c>2b,
    ③错误;
    ∵由图象可知x=﹣1时该二次函数取得最大值,
    ∴a﹣b+c>am2+bm+c(m≠﹣1).
    ∴m(am+b)<a﹣b.故④正确
    ∴正确的有①②④三个,
    故选C.
    考点:二次函数图象与系数的关系.
    【详解】
    请在此输入详解!
    4、C
    【解析】
    根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
    【详解】
    A.反比例函数的图像是双曲线,正确;
    B.k=2>0,图象位于一、三象限,正确;
    C.在每一象限内,y的值随x的增大而减小,错误;
    D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
    故选C.
    【点睛】
    本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
    5、B
    【解析】
    根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.
    【详解】
    解:∵D、E分别为△ABC的边AB、AC上的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,DE=BC,
    ∴△ADE∽△ABC,
    ∴△ADE的面积:△ABC的面积==1:4,
    ∴△ADE的面积:四边形BCED的面积=1:3;
    故选B.
    【点睛】
    本题考查三角形中位线定理及相似三角形的判定与性质.
    6、C
    【解析】
    根据不等式的性质进行判断.
    【详解】
    解:A、,但不一定成立,例如:,故本选项错误;
    B、,但不一定成立,例如:,,故本选项错误;
    C、时,成立,故本选项正确;
    D、时,成立,则不一定成立,故本选项错误;
    故选C.
    【点睛】
    考查了不等式的性质要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
    7、B
    【解析】
    试题解析:方差越小,波动越小.

    数据B的波动小一些.
    故选B.
    点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    8、D
    【解析】
    解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.
    【详解】
    由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).
    故选D.

    9、B
    【解析】
    利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.
    【详解】
    如图,

    ∵∠1、∠2是△CDE的外角,
    ∴∠1=∠4+∠C,∠2=∠3+∠C,
    即∠1+∠2=2∠C+(∠3+∠4),
    ∵∠3+∠4=180°-∠C=90°,
    ∴∠1+∠2=2×90°+90°=270°.
    故选B.
    【点睛】
    此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.
    10、B
    【解析】
    设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.
    【详解】
    解:设商品的进价为x元,售价为每件0.8×200元,由题意得
    0.8×200=x+40
    解得:x=120
    答:商品进价为120元.
    故选:B.
    【点睛】
    此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、20π
    【解析】
    解:=20πcm.故答案为20πcm.
    12、5.2
    【解析】
    分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
    详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
    ∴方差为:.
    点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
    13、
    【解析】
    根据概率的概念直接求得.
    【详解】
    解:4÷6=.
    故答案为:.
    【点睛】
    本题用到的知识点为:概率=所求情况数与总情况数之比.
    14、
    【解析】
    利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径的平方+底面周长×母线长÷1.
    【详解】
    底面半径为4cm,则底面周长=8πcm,底面面积=16πcm1;
    由勾股定理得,母线长=,
    圆锥的侧面面积,
    ∴它的表面积=(16π+4 )cm1= cm1 ,
    故答案为:.
    【点睛】
    本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
    15、
    【解析】
    分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.
    详解:连接AD、AE、OA、OB,

    ∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,
    ∴∠ADB=45°,
    ∴∠AOB=90°,
    ∵OA=OB=2,
    ∴AB=2,
    故答案为:2.
    点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    16、(16,) (8068,)
    【解析】
    利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
    【详解】
    ∵点A(﹣4,0),B(0,3),
    ∴OA=4,OB=3,
    ∴AB==5,
    ∴第(2)个三角形的直角顶点的坐标是(4,);
    ∵5÷3=1余2,
    ∴第(5)个三角形的直角顶点的坐标是(16,),
    ∵2018÷3=672余2,
    ∴第(2018)个三角形是第672组的第二个直角三角形,
    其直角顶点与第672组的第二个直角三角形顶点重合,
    ∴第(2018)个三角形的直角顶点的坐标是(8068,).
    故答案为:(16,);(8068,)
    【点睛】
    本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.
    17、85
    【解析】
    根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.
    【详解】
    解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,
    中位数为中间两数84和86的平均数,
    ∴这六位同学成绩的中位数是85.
    【点睛】
    本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.

    三、解答题(共7小题,满分69分)
    18、
    【解析】
    先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
    【详解】
    解:原式=1﹣•(÷)=1﹣••=1﹣=,
    当x=﹣2时,
    原式===.
    【点睛】
    本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
    19、(1)(2) ,
    【解析】
    【分析】(1)根据一元二次方程的定义可知k≠0,再根据方程有两个不相等的实数根,可知△>0,从而可得关于k的不等式组,解不等式组即可得;
    (2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.
    【详解】(1) 依题意,得,
    解得且;
    (2) ∵是小于9的最大整数,

    此时的方程为,
    解得,.
    【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.
    20、(1)证明见解析;(2).
    【解析】
    (1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
    (2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
    【详解】
    解:(1)证明:连接OD,

    ∵∠ACD=60°,
    ∴由圆周角定理得:∠AOD=2∠ACD=120°.
    ∴∠DOP=180°﹣120°=60°.
    ∵∠APD=30°,
    ∴∠ODP=180°﹣30°﹣60°=90°.
    ∴OD⊥DP.
    ∵OD为半径,
    ∴DP是⊙O切线.
    (2)∵∠ODP=90°,∠P=30°,OD=3cm,
    ∴OP=6cm,由勾股定理得:DP=3cm.
    ∴图中阴影部分的面积
    21、(1),;(2)P,.
    【解析】
    试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
    试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(1,3).
    把点A(1,3)代入反比例函数y=,
    得:3=k,
    ∴反比例函数的表达式y=,
    联立两个函数关系式成方程组得:,
    解得:,或,
    ∴点B的坐标为(3,1).
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.

    ∵点B、D关于x轴对称,点B的坐标为(3,1),
    ∴点D的坐标为(3,- 1).
    设直线AD的解析式为y=mx+n,
    把A,D两点代入得:,
    解得:,
    ∴直线AD的解析式为y=-2x+1.
    令y=-2x+1中y=0,则-2x+1=0,
    解得:x=,
    ∴点P的坐标为(,0).
    S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
    =×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
    =.
    考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
    22、今年妹妹6岁,哥哥10岁.
    【解析】
    试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.
    试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,
    根据题意得:

    解得: .
    答:今年妹妹6岁,哥哥10岁.
    考点:二元一次方程组的应用.
    23、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).
    【解析】
    分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,PD==1,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.
    详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,
    则点A(﹣2,0),B(0,2),
    把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得.
    ∴该抛物线的解析式为y=﹣x2﹣x+2;
    (2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,
    则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;
    (3)如图,作PE⊥x轴于点E,交AB于点D,
    在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,
    在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,
    设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,
    即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).

    点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.
    24、(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.
    【解析】
    (1)将函数解析式配方成顶点式可得最值;
    (1)画图象可得t的取值.
    【详解】
    (1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,
    ∴当t=1时,h取得最大值10米;
    答:小球飞行时间是1s时,小球最高为10m;
    (1)如图,

    由题意得:15=10t﹣5t1,
    解得:t1=1,t1=3,
    由图象得:当1≤t≤3时,h≥15,
    则小球飞行时间1≤t≤3时,飞行高度不低于15m.
    【点睛】
    本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.

    相关试卷

    江苏苏州高新区达标名校2022年中考数学考前最后一卷含解析:

    这是一份江苏苏州高新区达标名校2022年中考数学考前最后一卷含解析,共22页。

    2022年江苏省苏州市高新区中考数学最后一模试卷含解析:

    这是一份2022年江苏省苏州市高新区中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如果,那么代数式的值为等内容,欢迎下载使用。

    2022年江苏省苏州市高新区实验中考数学最后冲刺模拟试卷含解析:

    这是一份2022年江苏省苏州市高新区实验中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了近似数精确到,在平面直角坐标系内,点P,下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map