|试卷下载
搜索
    上传资料 赚现金
    江苏省无锡市部分市区市级名校2021-2022学年中考联考数学试题含解析
    立即下载
    加入资料篮
    江苏省无锡市部分市区市级名校2021-2022学年中考联考数学试题含解析01
    江苏省无锡市部分市区市级名校2021-2022学年中考联考数学试题含解析02
    江苏省无锡市部分市区市级名校2021-2022学年中考联考数学试题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡市部分市区市级名校2021-2022学年中考联考数学试题含解析

    展开
    这是一份江苏省无锡市部分市区市级名校2021-2022学年中考联考数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,下列命题是真命题的是等内容,欢迎下载使用。

    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是( )
    A.﹣10B.﹣5C.5D.10
    2.如图,内接于,若,则
    A.B.C.D.
    3.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )
    A.米B.米C.米D.米
    4.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为( )
    A.1000(1+x)2=1000+440B.1000(1+x)2=440
    C.440(1+x)2=1000D.1000(1+2x)=1000+440
    5. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
    A.2B.C.5D.
    6.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为( )
    A.B.C.D.
    7.的相反数是 ( )
    A.6B.-6C.D.
    8.若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是( )
    A.3B.6C.9D.36
    9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
    A.0.7米B.1.5米C.2.2米D.2.4米
    10.下列命题是真命题的是( )
    A.过一点有且只有一条直线与已知直线平行
    B.对角线相等且互相垂直的四边形是正方形
    C.平分弦的直径垂直于弦,并且平分弦所对的弧
    D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形
    二、填空题(共7小题,每小题3分,满分21分)
    11.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.
    12.已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的侧面展开图的圆心角 °.
    13.函数的定义域是__________.
    14.化简:______.
    15.一元二次方程x2=3x的解是:________.
    16.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.
    17.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°
    求证:(1)△PAC∽△BPD;
    (2)若AC=3,BD=1,求CD的长.
    19.(5分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
    (1)将上面的条形统计图补充完整;
    (2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?
    (3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?
    20.(8分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cs66°≈0.40,tan66°≈2.25)
    21.(10分)(1)问题发现:
    如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;
    (2)深入探究:
    如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
    (3)拓展延伸:
    如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.
    22.(10分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
    (1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
    (2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
    ①用含a的代数式表示小王四月份生产乙种产品的件数;
    ②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
    23.(12分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:
    (1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;
    (2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;
    (3)画射线OP.
    则射线OP为∠AOB的平分线.请写出小林的画法的依据______.
    24.(14分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.
    (1)求抛物线解析式;
    (2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;
    (3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.
    【详解】
    作AE⊥BC于E,如图,
    ∵四边形ABCD为平行四边形,
    ∴AD∥x轴,
    ∴四边形ADOE为矩形,
    ∴S平行四边形ABCD=S矩形ADOE,
    而S矩形ADOE=|−k|,
    ∴|−k|=1,
    ∵k<0,
    ∴k=−1.
    故选A.
    【点睛】
    本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    2、B
    【解析】
    根据圆周角定理求出,根据三角形内角和定理计算即可.
    【详解】
    解:由圆周角定理得,,


    故选:B.
    【点睛】
    本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.
    3、C
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    35000纳米=35000×10-9米=3.5×10-5米.
    故选C.
    【点睛】
    此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    4、A
    【解析】
    根据题意可以列出相应的一元二次方程,从而可以解答本题.
    【详解】
    解:由题意可得,
    1000(1+x)2=1000+440,
    故选:A.
    【点睛】
    此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.
    5、B
    【解析】
    根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
    【详解】
    根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
    故选B
    【点睛】
    本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
    6、A
    【解析】
    根据题意找到等量关系:①矩形面积+三角形面积﹣阴影面积=30;②(矩形面积﹣阴影面积)﹣(三角形面积﹣阴影面积)=4,据此列出方程组.
    【详解】
    依题意得:

    故选A.
    【点睛】
    考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
    7、D
    【解析】
    根据相反数的定义解答即可.
    【详解】
    根据相反数的定义有:的相反数是.
    故选D.
    【点睛】
    本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
    8、C
    【解析】
    设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-[x-(m-3)]2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值.
    【详解】
    设抛物线解析式为y=-(x-m)(x-m+6),
    ∵y=-[x2-2(m-3)x+(m-3)2-1]
    =-[x-(m-3)]2+1,
    ∴抛物线的顶点坐标为(m-3,1),
    ∴该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,
    即n=1.
    故选C.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
    9、C
    【解析】
    在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
    【详解】
    在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
    【点睛】
    本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
    10、D
    【解析】
    根据真假命题的定义及有关性质逐项判断即可.
    【详解】
    A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;
    B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;
    C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;
    D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.
    故选D.
    【点睛】
    本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.
    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    主视图、左视图是分别从物体正面、左面看,所得到的图形.
    【详解】
    易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.
    故答案为1.
    12、1
    【解析】
    试题分析:根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.
    解:∵侧面积为15πcm2,
    ∴圆锥侧面积公式为:S=πrl=π×3×l=15π,
    解得:l=5,
    ∴扇形面积为15π=,
    解得:n=1,
    ∴侧面展开图的圆心角是1度.
    故答案为1.
    考点:圆锥的计算.
    13、
    【解析】
    根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.
    【详解】
    根据题意得:x-1≥0,
    解得:x≥1.
    故答案为:.
    【点睛】
    此题考查二次根式,解题关键在于掌握二次根式有意义的条件.
    14、3
    【解析】
    分析:根据算术平方根的概念求解即可.
    详解:因为32=9
    所以=3.
    故答案为3.
    点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
    15、x1=0,x2=1
    【解析】
    先移项,然后利用因式分解法求解.
    【详解】
    x2=1x
    x2-1x=0,
    x(x-1)=0,
    x=0或x-1=0,
    ∴x1=0,x2=1.
    故答案为:x1=0,x2=1
    【点睛】
    本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解
    16、16000
    【解析】
    用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得结果.
    【详解】
    ∵A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,
    ∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×=16000,
    故答案为16000.
    【点睛】
    本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    17、6°
    【解析】
    ∠B=48°,∠ACB=90°,所以∠A=42°,DC是中线,所以∠BCD=∠B=48°,
    ∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.
    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2).
    【解析】
    (1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;
    (2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.
    【详解】
    证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,
    ∴∠APC+∠BPD=45°,
    又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,
    ∴∠PAB=∠PBD,∠BPD=∠PAC,
    ∵∠PCA=∠PDB,
    ∴△PAC∽△BPD;
    (2)∵,PC=PD,AC=3,BD=1
    ∴PC=PD=,
    ∴CD=.
    【点睛】
    本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.
    19、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
    【解析】
    (1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;
    (2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;
    (3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.
    【详解】
    解:(1)本次调查共抽取的学生有(名)
    选择“友善”的人数有(名)
    ∴条形统计图如图所示:
    (2)∵选择“爱国”主题所对应的百分比为,
    ∴选择“爱国”主题所对应的圆心角是;
    (3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.
    故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    20、15cm
    【解析】
    试题分析:设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函数得出方程,解方程即可.
    试题解析:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:
    ∴∠ADM=90°,
    ∵∠ANM=∠DMN=90°,
    ∴四边形ANMD是矩形,
    ∴AN=DM=14cm,
    ∴DB=14﹣5=9cm,
    ∴OD=x﹣9,
    在Rt△AOD中,cs∠AOD=,
    ∴cs66°==0.40,
    解得:x=15,
    ∴OB=15cm.
    21、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
    【解析】
    (1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
    (2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
    (3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
    【详解】
    (1)NC∥AB,理由如下:
    ∵△ABC与△MN是等边三角形,
    ∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
    ∴∠BAM=∠CAN,
    在△ABM与△ACN中,

    ∴△ABM≌△ACN(SAS),
    ∴∠B=∠ACN=60°,
    ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
    ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
    ∴CN∥AB;
    (2)∠ABC=∠ACN,理由如下:
    ∵=1且∠ABC=∠AMN,
    ∴△ABC~△AMN
    ∴,
    ∵AB=BC,
    ∴∠BAC=(180°﹣∠ABC),
    ∵AM=MN
    ∴∠MAN=(180°﹣∠AMN),
    ∵∠ABC=∠AMN,
    ∴∠BAC=∠MAN,
    ∴∠BAM=∠CAN,
    ∴△ABM~△ACN,
    ∴∠ABC=∠ACN;
    (3)如图3,连接AB,AN,
    ∵四边形ADBC,AMEF为正方形,
    ∴∠ABC=∠BAC=45°,∠MAN=45°,
    ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
    即∠BAM=∠CAN,
    ∵,
    ∴,
    ∴△ABM~△ACN
    ∴,
    ∴=cs45°=,
    ∴,
    ∴BM=2,
    ∴CM=BC﹣BM=8,
    在Rt△AMC,
    AM=,
    ∴EF=AM=2.
    【点睛】
    本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
    22、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
    【解析】
    (1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
    (2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
    ②根据“小王四月份的工资不少于1500元”即可列出不等式.
    【详解】
    (1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:

    解这个方程组得:,
    答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
    (2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
    ∴一小时生产甲产品4件,生产乙产品3件,
    所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
    ②依题意:1.5a+2.8(600-)≥1500,
    1680﹣0.6a≥1500,
    解得:a≤1.
    【点睛】
    本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
    23、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线
    【解析】
    利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.
    【详解】
    有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,
    所以∠POM=∠PON,
    即射线OP为∠AOB的平分线.
    故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.
    【点睛】
    本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.
    24、 (1) 抛物线解析式为y=﹣;(2) DF=3;(3) 点E的坐标为E1(4,1)或E2(﹣ ,﹣)或E3( ,﹣)或E4(,﹣).
    【解析】
    (1)将点A、C坐标代入抛物线解析式求解可得;
    (2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;
    (3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.
    【详解】
    (1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;
    (2)如图1.
    ∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.
    又∵DC=DE,∴△COD≌△DHE,∴DH=OC.
    又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;
    (3)如图2,设点D的坐标为(t,0).
    ∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:
    ①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);
    ②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);

    综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.
    生产甲产品件数(件)
    生产乙产品件数(件)
    所用总时间(分钟)
    10
    10
    350
    30
    20
    850
    相关试卷

    江苏省无锡市锡中市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省无锡市锡中市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了若分式有意义,则a的取值范围是等内容,欢迎下载使用。

    江苏省无锡市华士片市级名校2021-2022学年中考三模数学试题含解析: 这是一份江苏省无锡市华士片市级名校2021-2022学年中考三模数学试题含解析,共26页。试卷主要包含了如果,那么代数式的值是等内容,欢迎下载使用。

    江苏省无锡市部分市区2021-2022学年中考数学模拟预测试卷含解析: 这是一份江苏省无锡市部分市区2021-2022学年中考数学模拟预测试卷含解析,共26页。试卷主要包含了估计+1的值在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map