江苏省南京市十三中2022年中考数学最后一模试卷含解析
展开这是一份江苏省南京市十三中2022年中考数学最后一模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.﹣2018的绝对值是( )
A.±2018B.﹣2018C.﹣D.2018
2.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
A.中位数是4,众数是4B.中位数是3.5,众数是4
C.平均数是3.5,众数是4D.平均数是4,众数是3.5
3.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )
A.米B.米C.米D.米
4.下列函数中,y随着x的增大而减小的是( )
A.y=3xB.y=﹣3xC.D.
5.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为( )
A.5B.6C.7D.8
6.若关于的一元二次方程有两个不相等的实数根,则一次函数
的图象可能是:
A.B.C.D.
7.把不等式组的解集表示在数轴上,正确的是( )
A.B.
C.D.
8.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )
A.y=-x2-4x-1B.y=-x2-4x-2C.y=-x2+2x-1D.y=-x2+2x-2
9.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为( )
A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=100
10.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为( )
A.B.
C.D.
11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为( )
A.3B.4C.5D.6
12.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是( )
A.B.C.D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.
14.已知a,b为两个连续的整数,且a<<b,则ba=_____.
15.函数y=中自变量x的取值范围是_____.
16.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________ .
17.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.
18.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
20.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.
21.(6分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).
(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;
(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;
(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
22.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?
23.(8分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.
(1)求证:;
(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.
①如图2,若∠AFE=45°,求的值;
②如图3,若AB=BC,EC=3CF,直接写出cs∠AFE的值.
24.(10分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)
25.(10分)先化简,再求值:(),其中=
26.(12分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
27.(12分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.
详解:﹣2018的绝对值是2018,即.
故选D.
点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
2、A
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据中4出现的次数最多,众数为4,
∵共有7个人,
∴第4个人的劳动时间为中位数,
所以中位数为4,
故选A.
【点睛】
本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
3、A
【解析】
利用锐角三角函数关系即可求出小刚上升了的高度.
【详解】
在Rt△AOB中,∠AOB=90°,AB=300米,
BO=AB•sinα=300sinα米.
故选A.
【点睛】
此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
4、B
【解析】
试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;
B、y=﹣3x,y随着x的增大而减小,正确;
C、,每个象限内,y随着x的增大而减小,故此选项错误;
D、,每个象限内,y随着x的增大而增大,故此选项错误;
故选B.
考点:反比例函数的性质;正比例函数的性质.
5、C
【解析】
作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.
【详解】
解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,
设D(x,),
∵四边形ABCD是正方形,
∴AD=CD=BC,∠ADC=∠DCB=90°,
易得△AGD≌△DHC≌△CMB(AAS),
∴AG=DH=﹣x﹣1,
∴DG=BM,
∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,
由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,
解得x=﹣2,
∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,
∵AG=DH=﹣1﹣x=1,
∴点E的纵坐标为﹣4,
当y=﹣4时,x=﹣,
∴E(﹣,﹣4),
∴EH=2﹣=,
∴CE=CH﹣HE=4﹣=,
∴S△CEB=CE•BM=××4=7;
故选C.
【点睛】
考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.
6、B
【解析】
由方程有两个不相等的实数根,
可得,
解得,即异号,
当时,一次函数的图象过一三四象限,
当时,一次函数的图象过一二四象限,故答案选B.
7、B
【解析】
首先解出各个不等式的解集,然后求出这些解集的公共部分即可.
【详解】
解:由x﹣2≥0,得x≥2,
由x+1<0,得x<﹣1,
所以不等式组无解,
故选B.
【点睛】
解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.
8、D
【解析】
把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.
【详解】
解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).
由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.
∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.
9、A
【解析】
利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.
【详解】
由题意知,蔬菜产量的年平均增长率为x,
根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,
2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,
即: 80(1+x)2=100,
故选A.
【点睛】
本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.
10、D
【解析】
解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.
11、C
【解析】
如图所示,∵(a+b)2=21
∴a2+2ab+b2=21,
∵大正方形的面积为13,2ab=21﹣13=8,
∴小正方形的面积为13﹣8=1.
故选C.
考点:勾股定理的证明.
12、A
【解析】
设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.
解:设乙骑自行车的平均速度为x千米/时,由题意得:
=,
故选A.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2
【解析】
首先连接BD,由AB是⊙O的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度数,又由AD=6,求得AB的长,继而求得答案.
【详解】
解:连接BD,
∵AB是⊙O的直径,
∴∠C=∠D=90°,
∵∠BAC=60°,弦AD平分∠BAC,
∴∠BAD=∠BAC=30°,
∴在Rt△ABD中,AB==4,
∴在Rt△ABC中,AC=AB•cs60°=4×=2.
故答案为2.
14、1
【解析】
根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.
【详解】
解:∵a,b为两个连续的整数,且a<<b,
∴a=2,b=3,
∴ba=32=1.
故答案为1.
【点睛】
此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,
15、x≥﹣且x≠1.
【解析】
根据分式有意义的条件、二次根式有意义的条件列式计算.
【详解】
由题意得,2x+3≥0,x-1≠0,
解得,x≥-且x≠1,
故答案为:x≥-且x≠1.
【点睛】
本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.
16、
【解析】
设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得
所以
17、70°.
【解析】
由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.
【详解】
∵∠AEC=40°,
∴∠AED=180°﹣∠AEC=140°,
∵EF平分∠AED,
∴,
又∵AB∥CD,
∴∠AFE=∠DEF=70°.
故答案为:70
【点睛】
本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.
18、1.
【解析】
分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.
详解:矩形的周长=3+3+2+2=1.
点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)50;(2)16;(3)56(4)见解析
【解析】
(1)用A等级的频数除以它所占的百分比即可得到样本容量;
(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
【详解】
(1)10÷20%=50(名)
答:本次抽样调查共抽取了50名学生.
(2)50-10-20-4=16(名)
答:测试结果为C等级的学生有16名.
图形统计图补充完整如下图所示:
(3)700×=56(名)
答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
(4)画树状图为:
共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
所以抽取的两人恰好都是男生的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
20、见解析
【解析】
(1)如图:
(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.
21、(1);(1) ;(3);
【解析】
(1)直接根据概率公式求解;
(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;
(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.
【详解】
解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;
(1)画树状图为:
共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,
所以一个径赛项目和一个田赛项目的概率P1==;
(3)两个项目都是径赛项目的结果数为6,
所以两个项目都是径赛项目的概率P1==.
故答案为.
考点:列表法与树状图法.
22、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样.
【解析】
试题分析:
(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;
(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.
试题解析:
(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;
(2)列表法:
由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,
∴P2=,
∵P1=,P2=,P1≠P2
∴淇淇与嘉嘉抽到勾股数的可能性不一样.
23、(1)见解析;(2)①;②cs∠AFE=
【解析】
(1)用特殊值法,设,则,证,可求出CF,DF的长,即可求出结论;
(2)①如图2,过F作交AD于点G,证和是等腰直角三角形,证,求出的值,即可写出的值;②如图3,作交AD于点T,作于H,证,设CF=2,则CE=6,可设AT=x,则TF=3x,,,分别用含x的代数式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出结论.
【详解】
(1)设BE=EC=2,则AB=BC=4,
∵,
∴,
∵,
∴∠FEC=∠EAB,
又∴,
∴,
∴,
即,
∴CF=1,
则,
∴;
(2)①如图2,过F作交AD于点G,
∵,
∴和是等腰直角三角形,
∴,,
∴∠AGF=∠C,
又∵,
∴∠GAF=∠CFE,
∴,
∴,
又∵GF=DF,
∴;
②如图3,作交AD于点T,作于H,
则,
∴,
∴∠ATF=∠C,
又∵,且∠D=∠AFE,
∴∠TAF=∠CFE,
∴,
∴,
设CF=2,则CE=6,可设AT=x,则TF=3x,,
∴,且,
由,得,
解得x=5,
∴.
【点睛】
本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.
24、见解析.
【解析】
分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.
【详解】
如图,点P为所作.
【点睛】
本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.
25、
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.
详解:原式=
将
原式=
点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.
26、(1)证明见解析;(2)3或.(3)或0<
【解析】
(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
【详解】
(1)证明:∵矩形ABCD,
∴AD∥BC.
∴∠PAF=∠AEB.
又∵PF⊥AE,
∴△PFA∽△ABE.
(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
则有PE∥AB
∴四边形ABEP为矩形,
∴PA=EB=3,即x=3.
情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点,
即
∴满足条件的x的值为3或
(3) 或
【点睛】
两组角对应相等,两三角形相似.
27、见解析
【解析】
证明:∵DE∥AB,∴∠CAB=∠ADE.
在△ABC和△DAE中,∵,
∴△ABC≌△DAE(ASA).
∴BC=AE.
【点睛】
根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE全等,再根据全等三角形对应边相等证明即可.
劳动时间(小时)
3
3.5
4
4.5
人 数
1
1
3
2
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
相关试卷
这是一份2023年江苏省徐州十三中中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南京市二十九中学2023年中考数学最后一模试卷含解析,共16页。
这是一份江苏省南京市建邺区2021-2022学年中考数学最后一模试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,二次函数y=等内容,欢迎下载使用。