终身会员
搜索
    上传资料 赚现金

    江苏省南京师范大附中江宁分校2022年中考数学最后冲刺模拟试卷含解析

    立即下载
    加入资料篮
    江苏省南京师范大附中江宁分校2022年中考数学最后冲刺模拟试卷含解析第1页
    江苏省南京师范大附中江宁分校2022年中考数学最后冲刺模拟试卷含解析第2页
    江苏省南京师范大附中江宁分校2022年中考数学最后冲刺模拟试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南京师范大附中江宁分校2022年中考数学最后冲刺模拟试卷含解析

    展开

    这是一份江苏省南京师范大附中江宁分校2022年中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,若分式的值为零,则x的值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列运算正确的是(  )
    A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a6
    2.单项式2a3b的次数是(  )
    A.2 B.3 C.4 D.5
    3.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是(  )
    ①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE与△BDF的周长相等.

    A.1个 B.2个 C.3个 D.4个
    4.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是(  )
    A. B. C. D.
    5.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )

    A.点M B.点N C.点P D.点Q
    6.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为(  )

    A. B. C. D.
    7.如图,在中,分别在边边上,已知,则的值为( )

    A. B. C. D.
    8.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为(  )
    A.4.995×1011 B.49.95×1010
    C.0.4995×1011 D.4.995×1010
    9.若分式的值为零,则x的值是( )
    A.1 B. C. D.2
    10.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
    A.能中奖一次 B.能中奖两次
    C.至少能中奖一次 D.中奖次数不能确定
    二、填空题(共7小题,每小题3分,满分21分)
    11.分解因式:xy2﹣2xy+x=_____.
    12.如图,直线经过、两点,则不等式的解集为_______.

    13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△OBC的面积为____.

    14.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.

    15.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.

    16.一辆汽车在坡度为的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.
    17.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.
    摸球的次数n
    100
    150
    200
    500
    800
    1000
    摸到白球的次数m
    58
    96
    116
    295
    484
    601
    摸到白球的频率m/n
    0.58
    0.64
    0.58
    0.59
    0.605
    0.601

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:
    (1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.
    (2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.
    (3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?

    19.(5分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:

    (1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;
    (2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;
    (3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?
    20.(8分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
    (2)如图,在中,,,为边的中点,于点,交于,求的值
    (3)如图,中,,为边的中点,于点,交于,若,,求.

    21.(10分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.

    补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.
    22.(10分)问题提出
    (1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,∠ADC=60°,则四边形 ABCD 的面积为 _;
    问题探究
    (2).如图 2,在四边形 ABCD 中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得△BEF 的周长最小,作出图像即可.

    23.(12分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).
    (1)求抛物线的解析式;
    (2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.
    ①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;
    ②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.

    24.(14分)甲、乙两人在5次打靶测试中命中的环数如下:
    甲:8,8,7,8,9
    乙:5,9,7,10,9
    (1)填写下表:

    平均数

    众数

    中位数

    方差



    8



    8

    0.4





    9



    3.2

    (2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
    (3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 .(填“变大”、“变小”或“不变”).



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.
    【详解】
    A、a2+a2=2a2,故错误;
    B、(a+b)2=a2+2ab+b2,故错误;
    C、a6÷a2=a4,故错误;
    D、(-2a3)2=4a6,正确;
    故选D.
    【点睛】
    本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.
    2、C
    【解析】
    分析:根据单项式的性质即可求出答案.
    详解:该单项式的次数为:3+1=4
    故选C.
    点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.
    3、D
    【解析】
    等腰直角三角形纸片ABC中,∠C=90°,
    ∴∠A=∠B=45°,
    由折叠可得,∠EDF=∠A=45°,
    ∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,
    ∴∠CDE=∠DFB,故①正确;
    由折叠可得,DE=AE=3,
    ∴CD=,
    ∴BD=BC﹣DC=4﹣>1,
    ∴BD>CE,故②正确;
    ∵BC=4,CD=4,
    ∴BC=CD,故③正确;
    ∵AC=BC=4,∠C=90°,
    ∴AB=4,
    ∵△DCE的周长=1+3+2=4+2,
    由折叠可得,DF=AF,
    ∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,
    ∴△DCE与△BDF的周长相等,故④正确;
    故选D.
    点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    4、C
    【解析】
    试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.
    考点:中心对称图形的概念.
    5、C
    【解析】
    试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.

    考点:有理数大小比较.
    6、C
    【解析】
    由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.
    【详解】
    第(1)个图形中面积为1的正方形有2个,
    第(2)个图形中面积为1的图象有2+3=5个,
    第(3)个图形中面积为1的正方形有2+3+4=9个,
    …,
    按此规律,
    第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.
    【点睛】
    本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.
    7、B
    【解析】
    根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.
    【详解】
    解:∵,
    ∴,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴,
    故选:B.
    【点睛】
    本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.
    8、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    将499.5亿用科学记数法表示为:4.995×1.
    故选D.
    【点睛】
    此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、A
    【解析】
    试题解析:∵分式的值为零,
    ∴|x|﹣1=0,x+1≠0,
    解得:x=1.
    故选A.
    10、D
    【解析】
    由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.
    【详解】
    解:根据随机事件的定义判定,中奖次数不能确定
    故选D.
    【点睛】
    解答此题要明确概率和事件的关系:
    ,为不可能事件;
    为必然事件;
    为随机事件.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x(y-1)2
    【解析】
    分析:先提公因式x,再用完全平方公式把继续分解.
    详解:
    =x()
    =x()2.
    故答案为x()2.
    点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.
    12、-1<X<2
    【解析】

    经过点A,
    ∴不等式x>kx+b>-2的解集为.
    13、6
    【解析】
    根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△OBC的面积.
    【详解】
    设点A的坐标为(a,),点B的坐标为(b,),
    ∵点C是x轴上一点,且AO=AC,
    ∴点C的坐标是(2a,0),
    设过点O(0,0),A(a, )的直线的解析式为:y=kx,
    ∴=k⋅a,
    解得k=,
    又∵点B(b, )在y=x上,
    ∴=⋅b,解得, =或=− (舍去),
    ∴S△OBC==6.
    故答案为:6.
    【点睛】
    本题考查了等腰三角形的性质与反比例函数的图象以及三角形的面积公式,解题的关键是熟练的掌握等腰三角形的性质与反比例函数的图象以及三角形的面积公式.
    14、1
    【解析】
    试题分析:设点C的坐标为(x,y),则B(-2,y)D(x,-2),设BD的函数解析式为y=mx,则y=-2m,x=-,∴k=xy=(-2m)·(-)=1.
    考点:求反比例函数解析式.
    15、5:1
    【解析】
    根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.
    【详解】
    解:

    作AE∥BC交DC于点E,交DF于点F,
    设每个小正方形的边长为a,
    则△DEF∽△DCN,
    ∴==,
    ∴EF=a,
    ∵AF=2a,
    ∴AE=a,
    ∵△AME∽△BMC,
    ∴===,
    故答案为:5:1.
    【点睛】
    本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    16、50.
    【解析】
    根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.
    【详解】
    解:如图,米


    设,则,
    则,
    解得,
    故答案为:50.
    【点睛】
    本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.
    17、0.1
    【解析】
    根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.
    【详解】
    解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,
    则P白球=0.1.
    故答案为0.1.
    【点睛】
    本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)当t=3时,△AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)
    【解析】
    (1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即 可解决问题;
    【详解】
    (1)如图①中,
    ∵C(6,0),
    ∴BC=6
    在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,
    由题意知,当0<t<6时,AD=BE=CF=t,
    ∴BD=CE=AF=6﹣t,
    ∴△ADF≌△CFE≌△BED(SAS),
    ∴EF=DF=DE,
    ∴△DEF是等边三角形,
    ∴不论t如何变化,△DEF始终为等边三角形;

    (2)如图②中,作AH⊥BC于H,则AH=AB•sin60°=3,

    ∴S△AEC=×3×(6﹣t)=,
    ∵EQ∥AB,
    ∴△CEQ∽△ABC,
    ∴=()2=,即S△CEQ=S△ABC=×9=,
    ∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,
    ∵a=﹣<0,
    ∴抛物线开口向下,有最大值,
    ∴当t=3时,△AEQ的面积最大为cm2,
    (3)如图③中,由(2)知,E点为BC的中点,线段EQ为△ABC的中位线,

    当AD为菱形的边时,可得P1(3,0),P3(6,3),
    当AD为对角线时,P2(0,3),
    综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3).
    【点睛】
    本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    19、(1)50;4;5;画图见解析;(2)144°;(3)64
    【解析】
    (1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;
    (2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;
    (3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.
    【详解】
    解:(1)∵课外阅读达3小时的共10人,占总人数的20%,
    ∴=50(人).
    ∵课外阅读4小时的人数是32%,
    ∴50×32%=16(人),
    ∴男生人数=16﹣8=8(人);
    ∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
    ∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
    ∴中位数是4小时,众数是5小时.
    补全图形如图所示.

    故答案为50,4,5;
    (2)∵课外阅读5小时的人数是20人,
    ∴×360°=144°.
    故答案为144°;
    (3)∵课外阅读6小时的人数是4人,
    ∴800×=64(人).
    答:九年级一周课外阅读时间为6小时的学生大约有64人.
    【点睛】
    本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.
    20、 (1)相等,理由见解析;(2)2;(3).
    【解析】
    (1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
    (2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
    (3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
    【详解】
    解:(1)BF=AE,理由:
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=∠D=90°,
    ∴∠BAE+∠DAE=90°,
    ∵AE⊥BF,
    ∴∠BAE+∠ABF=90°,
    ∴∠ABF=∠DAE,
    在△ABF和△DAE中,
    ∴△ABF≌△DAE,
    ∴BF=AE,
    (2) 如图2,
    过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,

    ∴四边形ABCM是平行四边形,
    ∵∠ABC=90°,
    ∴▱ABCM是矩形,
    ∵AB=BC,
    ∴矩形ABCM是正方形,
    ∴AB=BC=CM,
    同(1)的方法得,△ABD≌△BCG,
    ∴CG=BD,
    ∵点D是BC中点,
    ∴BD=BC=CM,
    ∴CG=CM=AB,
    ∵AB∥CM,
    ∴△AFB∽△CFG,

    (3) 如图3,

    在Rt△ABC中,AB=3,BC=4,
    ∴AC=5,
    ∵点D是BC中点,
    ∴BD=BC=2,
    过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
    ∴四边形ABCN是平行四边形,
    ∵∠ABC=90°,∴▱ABCN是矩形,
    同(1)的方法得,∠BAD=∠CBP,
    ∵∠ABD=∠BCP=90°,
    ∴△ABD∽△BCP,


    ∴CP=
    同(2)的方法,△CFP∽△AFB,


    ∴CF=.
    【点睛】
    本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
    21、576名
    【解析】
    试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.
    试题解析:
    本次调查的学生有:32÷16%=200(名),
    体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),
    补全的条形统计图如右图所示,

    我校初三年级体重介于47kg至53kg的学生大约有:1800×=576(名),
    答:我校初三年级体重介于47kg至53kg的学生大约有576名.
    22、(1)3 ,(2)见解析
    【解析】
    (1)易证△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△AEF即为所求.
    【详解】
    (1)∵AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,
    ∴△ABD≌△CBD(HL)
    ∴∠ADB=∠CDB=∠ADC=30°,
    ∴AB=
    ∴S△ABD==
    ∴四边形ABCD的面积为2S△ABD=
    (2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△BEF的周长为BE+EF+BF=B’E+EF+B’’F=B’B’’为最短.
    故此时△BEF的周长最小.

    【点睛】
    此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.
    23、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).
    【解析】
    (1)应用待定系数法问题可解;
    (2)①通过分类讨论研究△APQ和△CDO全等
    ②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.
    【详解】
    (1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得

    解得: ,
    ∴抛物线解析式为:y=-x2-x+3;
    (2)①存在点D,使得△APQ和△CDO全等,
    当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,
    ∴tan∠QAP=tan∠DCO,

    ∴,
    ∴OD=,
    ∴点D坐标为(-,0).
    由对称性,当点D坐标为(,0)时,
    由点B坐标为(4,0),
    此时点D(,0)在线段OB上满足条件.
    ②∵OC=3,OB=4,
    ∴BC=5,
    ∵∠DCB=∠CDB,
    ∴BD=BC=5,
    ∴OD=BD-OB=1,
    则点D坐标为(-1,0)且AD=BD=5,
    连DN,CM,

    则DN=DM,∠NDC=∠MDC,
    ∴∠NDC=∠DCB,
    ∴DN∥BC,
    ∴,
    则点N为AC中点.
    ∴DN时△ABC的中位线,
    ∵DN=DM=BC=,
    ∴OM=DM-OD=
    ∴点M(,0)
    【点睛】
    本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.
    24、(1)填表见解析;(2)理由见解析;(3)变小.
    【解析】
    (1)根据众数、平均数和中位数的定义求解:
    (2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
    (3)根据方差公式求解:如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.
    【详解】
    试题分析:
    试题解析:解:(1)甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9.
    故填表如下:

    平均数

    众数

    中位数

    方差



    8

    8

    8

    0.4



    8

    9

    9

    3.2

    (2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;
    (3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小.
    考点:1.方差;2.算术平均数;3.中位数;4.众数.

    相关试卷

    江苏省南京师范大附中江宁分校2023-2024学年九上数学期末统考模拟试题含答案:

    这是一份江苏省南京师范大附中江宁分校2023-2024学年九上数学期末统考模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算,正确的是等内容,欢迎下载使用。

    江苏省南京师范大附中江宁分校2023-2024学年数学八上期末调研试题含答案:

    这是一份江苏省南京师范大附中江宁分校2023-2024学年数学八上期末调研试题含答案,共7页。试卷主要包含了把分解因式正确的是等内容,欢迎下载使用。

    江苏省南京师范大附中江宁分校2023-2024学年八上数学期末达标测试试题含答案:

    这是一份江苏省南京师范大附中江宁分校2023-2024学年八上数学期末达标测试试题含答案,共7页。试卷主要包含了分式有意义,则的取值范围是,若是完全平方式,则的值为,已知,下列各式中是分式的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map