搜索
    上传资料 赚现金
    英语朗读宝

    江苏省灌云县2021-2022学年中考数学仿真试卷含解析

    江苏省灌云县2021-2022学年中考数学仿真试卷含解析第1页
    江苏省灌云县2021-2022学年中考数学仿真试卷含解析第2页
    江苏省灌云县2021-2022学年中考数学仿真试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省灌云县2021-2022学年中考数学仿真试卷含解析

    展开

    这是一份江苏省灌云县2021-2022学年中考数学仿真试卷含解析,共22页。试卷主要包含了下列各数中,最小的数是,下列运算正确的是,在数轴上表示不等式2等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于( )

    A. B. C. D.
    2.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

    下列说法正确的是( )
    A.这10名同学体育成绩的中位数为38分
    B.这10名同学体育成绩的平均数为38分
    C.这10名同学体育成绩的众数为39分
    D.这10名同学体育成绩的方差为2
    3.如图,是的直径,是的弦,连接,,,则与的数量关系为( )

    A. B.
    C. D.
    4.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )

    A. B.
    C. D.
    5.下列各数中,最小的数是
    A. B. C.0 D.
    6.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是  
    A. B. C. D.
    7.一元二次方程x2﹣5x﹣6=0的根是(  )
    A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=6
    8.已知是二元一次方程组的解,则m+3n的值是( )
    A.4 B.6 C.7 D.8
    9.下列运算正确的是(  )
    A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(+)2=5
    10.在数轴上表示不等式2(1﹣x)<4的解集,正确的是(  )
    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为_____.

    12.计算=_____.
    13.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.

    14.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n个图案中有__________张白色纸片.

    15.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.

    16.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是 .

    三、解答题(共8题,共72分)
    17.(8分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
    (1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
    (2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
    18.(8分) (1)解方程组
    (2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
    19.(8分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.

    (1)试探究线段AE与CG的关系,并说明理由.
    (2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
    ①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
    ②当△CDE为等腰三角形时,求CG的长.
    20.(8分)如图,△ABC与△A1B1C1是位似图形.
    (1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
    (2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
    (3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.

    21.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.

    22.(10分)某企业信息部进行市场调研发现:
    信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
    x(万元)
    1
    2
    2.5
    3
    5
    yA(万元)
    0.4
    0.8
    1
    1.2
    2
    信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
    (1)求出yB与x的函数关系式;
    (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
    (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
    23.(12分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_____.
    24.如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=  .半圆D与数轴有两个公共点,设另一个公共点是C.
    ①直接写出m的取值范围是  .
    ②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.
    解:作AH⊥BC于H,作直径CF,连结BF,如图,

    ∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,
    ∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,
    ∵AH⊥BC,∴CH=BH,
    ∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.
    ∴,
    ∴BC=2BH=2.
    故选A.
    “点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.
    2、C
    【解析】
    试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
    第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
    平均数==38.4
    方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
    ∴选项A,B、D错误;
    故选C.
    考点:方差;加权平均数;中位数;众数.
    3、C
    【解析】
    首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.
    【详解】
    解:∵是的直径,
    ∴∠ADB=90°.
    ∴∠DAB+∠B=90°.
    ∵∠B=∠C,
    ∴∠DAB+∠C=90°.
    故选C.
    【点睛】
    本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.
    4、D
    【解析】
    找到从左面看到的图形即可.
    【详解】
    从左面上看是D项的图形.故选D.
    【点睛】
    本题考查三视图的知识,左视图是从物体左面看到的视图.
    5、A
    【解析】
    应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.
    【详解】
    解:因为在数轴上-3在其他数的左边,所以-3最小;
    故选A.
    【点睛】
    此题考负数的大小比较,应理解数字大的负数反而小.
    6、A
    【解析】
    根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
    【详解】
    ∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
    ∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
    ∴m<,
    故选A.
    【点睛】
    本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    7、D
    【解析】
    本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.
    【详解】
    x2-5x-6=1
    (x-6)(x+1)=1
    x1=-1,x2=6
    故选D.
    【点睛】
    本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.
    8、D
    【解析】
    分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.
    详解:根据题意,将代入,得:,
    ①+②,得:m+3n=8,
    故选D.
    点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.
    9、B
    【解析】
    利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.
    【详解】
    解:A、a2与a3不能合并,所以A选项错误;
    B、原式=a6÷a6=1,所以A选项正确;
    C、原式=a5,所以C选项错误;
    D、原式=2+2+3=5+2,所以D选项错误.
    故选:B.
    【点睛】
    本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    10、A
    【解析】
    根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
    去括号得:2﹣2x<4
    移项得:2x>﹣2,
    系数化为1得:x>﹣1,
    故选A.
    “点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、7π
    【解析】
    连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出的长.
    【详解】
    连接OD,

    ∵直线DE与⊙O相切于点D,
    ∴∠EDO=90°,
    ∵∠CDE=20°,
    ∴∠ODB=180°-90°-20°=70°,
    ∵OD=OB,
    ∴∠ODB=∠OBD=70°,
    ∴∠AOD=140°,
    ∴的长==7π,
    故答案为:7π.
    【点睛】
    本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.
    12、0
    【解析】
    分析:先计算乘方、零指数幂,再计算加减可得结果.
    详解:1-1=0
    故答案为0.
    点睛:零指数幂成立的条件是底数不为0.
    13、①②③④ .
    【解析】
    由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;
    证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;
    由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;
    证出△ACD∽△FEQ,得出对应边成比例,得出④正确.
    【详解】
    解:∵四边形ADEF为正方形,
    ∴∠FAD=90°,AD=AF=EF,
    ∴∠CAD+∠FAG=90°,
    ∵FG⊥CA,
    ∴∠GAF+∠AFG=90°,
    ∴∠CAD=∠AFG,
    在△FGA和△ACD中,

    ∴△FGA≌△ACD(AAS),
    ∴AC=FG,①正确;
    ∵BC=AC,
    ∴FG=BC,
    ∵∠ACB=90°,FG⊥CA,
    ∴FG∥BC,
    ∴四边形CBFG是矩形,
    ∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;
    ∵CA=CB,∠C=∠CBF=90°,
    ∴∠ABC=∠ABF=45°,③正确;
    ∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
    ∴△ACD∽△FEQ,
    ∴AC:AD=FE:FQ,
    ∴AD•FE=AD2=FQ•AC,④正确;
    故答案为①②③④.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
    14、13 3n+1
    【解析】
    分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.
    详解:∵第1个图案中有白色纸片3×1+1=4张
    第2个图案中有白色纸片3×2+1=7张,
    第3图案中有白色纸片3×3+1=10张,
    ∴第4个图案中有白色纸片3×4+1=13张
    第n个图案中有白色纸片3n+1张,
    故答案为:13、3n+1.
    点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.
    15、143549
    【解析】
    根据题中密码规律确定所求即可.
    【详解】
    532=5×3×10000+5×2×100+5×(2+3)=151025
    924=9×2×10000+9×4×100+9×(2+4)=183654,
    863=8×6×10000+8×3×100+8×(3+6)=482472,
    ∴725=7×2×10000+7×5×100+7×(2+5)=143549.
    故答案为:143549
    【点睛】
    本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.
    16、n1+n+1.
    【解析】
    试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,
    分别为:
    第一个图有:1+1+1个,
    第二个图有:4+1+1个,
    第三个图有:9+3+1个,

    第n个为n1+n+1.
    考点:规律型:图形的变化类.

    三、解答题(共8题,共72分)
    17、(1)甲80件,乙20件;(2)x≤90
    【解析】
    (1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
    (2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
    【详解】
    解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
    根据题意得30x+20(100﹣x)=2800,
    解得x=80,
    则100﹣x=20,
    答:甲种奖品购买了80件,乙种奖品购买了20件;
    (2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
    根据题意得:30x+20(100﹣x)≤2900,
    解得:x≤90,
    【点睛】
    本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
    18、(1);(2)当坐标为时,取得最小值为.
    【解析】
    (1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值.
    【详解】
    解:(1)
    ①②得:
    解得:
    把代入②得,
    则方程组的解为
    (2 )由题意得:,
    当坐标为时,取得最小值为.
    【点睛】
    此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.
    19、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;
    理由见解析;②当△CDE为等腰三角形时,CG的长为或或.
    【解析】
    试题分析:证明≌即可得出结论.
    ①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.
    分成三种情况讨论即可.
    试题解析:(1)
    理由是:如图1,∵四边形EFGD是正方形,


    ∵四边形ABCD是正方形,


    ∴≌



    ∴ 即
    (2)①位置关系保持不变,数量关系变为
    理由是:如图2,连接EG、DF交于点O,连接OC,

    ∵四边形EFGD是矩形,

    Rt中,OG=OF,
    Rt中,

    ∴D、E、F、C、G在以点O为圆心的圆上,

    ∴DF为的直径,

    ∴EG也是的直径,
    ∴∠ECG=90°,即






    ②由①知:
    ∴设
    分三种情况:
    (i)当时,如图3,过E作于H,则EH∥AD,


    ∴ 由勾股定理得:



    (ii)当时,如图1,过D作于H,










    (iii)当时,如图5,




    综上所述,当为等腰三角形时,CG的长为或或.
    点睛:两组角对应,两三角形相似.
    20、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
    【解析】
    分析:(1)直接利用已知点位置得出B点坐标即可;
    (2)直接利用位似图形的性质得出对应点位置进而得出答案;
    (3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
    详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
    故答案为(﹣2,﹣5);
    (2)如图所示:△AB2C2,即为所求;
    (3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
    故答案为6+4.

    点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.
    21、(1)50;(2)240;(3).
    【解析】
    用喜爱社会实践的人数除以它所占的百分比得到n的值;
    先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;
    画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.
    【详解】
    解:(1);
    (2)样本中喜爱看电视的人数为(人,

    所以估计该校喜爱看电视的学生人数为240人;
    (3)画树状图为:

    共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,
    所以恰好抽到2名男生的概率.
    【点睛】
    本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.
    22、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
    【解析】
    (1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
    (2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
    (3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
    【详解】
    解:(1)yB=-0.2x2+1.6x,
    (2)一次函数,yA=0.4x,
    (3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
    ∴当x=3时,W最大值=7.8,
    答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
    23、
    【解析】
    解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.
    【详解】
    ∵,

    若b>2a,
    即a=2,3,4,5,6    b=4,5,6
    符合条件的数组有(2,5)(2,6)共有2个,
    若b<2a,
    符合条件的数组有(1,1)共有1个,
    ∴概率p=.
    故答案为:.
    【点睛】
    本题主要考查了古典概率及其概率计算公式的应用.
    24、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
    【解析】
    (1)根据题意由勾股定理即可解答
    (2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
    ②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
    (3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    【详解】
    (1)当半圆与数轴相切时,AB⊥OB,
    由勾股定理得m= ,
    故答案为 .
    (2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
    当O、A、B三点在数轴上时,m=7+4=11,
    ∴半圆D与数轴有两个公共点时,m的取值范围为.
    故答案为.
    ②如图,连接DC,当BC=2时,

    ∵BC=CD=BD=2,
    ∴△BCD为等边三角形,
    ∴∠BDC=60°,
    ∴∠ADC=120°,
    ∴扇形ADC的面积为 ,

    ∴△AOB与半圆D的公共部分的面积为 ;
    (3)如图1,

    当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
    解得x= ,OH= ,AH= ,
    ∴tan∠AOB=,
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,

    设BH=x,则72﹣(4﹣x)2=42﹣x2,
    解得x= ,OH=,AH=,
    ∴tan∠AOB=.
    综合以上,可得tan∠AOB的值为或.
    【点睛】
    此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线

    相关试卷

    2021-2022学年江苏省江阴市要塞片中考数学仿真试卷含解析:

    这是一份2021-2022学年江苏省江阴市要塞片中考数学仿真试卷含解析,共19页。试卷主要包含了下列各数中,最小的数是等内容,欢迎下载使用。

    2021-2022学年江苏省淮安曙光双语校中考数学仿真试卷含解析:

    这是一份2021-2022学年江苏省淮安曙光双语校中考数学仿真试卷含解析,共19页。试卷主要包含了我们知道,下列运算结果正确的是等内容,欢迎下载使用。

    2021-2022学年江苏省淮安市洪泽区中考数学仿真试卷含解析:

    这是一份2021-2022学年江苏省淮安市洪泽区中考数学仿真试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map