江苏省东台市第六联盟市级名校2022年中考联考数学试卷含解析
展开这是一份江苏省东台市第六联盟市级名校2022年中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,若x>y,则下列式子错误的是,函数的自变量x的取值范围是,如图,﹣3的相反数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图中任意画一个点,落在黑色区域的概率是( )
A. B. C.π D.50
2.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为( )
A.x<2 B.x>2 C.x<5 D.x>5
3.一个多边形的每个内角都等于120°,则这个多边形的边数为( )
A.4 B.5 C.6 D.7
4.若x>y,则下列式子错误的是( )
A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.
5.函数的自变量x的取值范围是( )
A.x>1 B.x<1 C.x≤1 D.x≥1
6.如图: 在中,平分,平分,且交于,若,则等于( )
A.75 B.100 C.120 D.125
7.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是( )
A. B. C. D.
8.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )
成绩(分) | 30 | 29 | 28 | 26 | 18 |
人数(人) | 32 | 4 | 2 | 1 | 1 |
A.该班共有40名学生
B.该班学生这次考试成绩的平均数为29.4分
C.该班学生这次考试成绩的众数为30分
D.该班学生这次考试成绩的中位数为28分
9.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )
A.点的左边 B.点与点之间 C.点与点之间 D.点的右边
10.﹣3的相反数是( )
A. B. C. D.
11.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为( )
A. B. C. D.
12.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )
A.① B.② C.③ D.④
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若代数式有意义,则实数x的取值范围是____.
14.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.
15.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.
16.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.
17.4的平方根是 .
18.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知抛物线经过,两点,顶点为.
(1)求抛物线的解析式;
(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
20.(6分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.
(Ⅰ)如图①,求OD的长及的值;
(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.
①在旋转过程中,当∠BAG′=90°时,求α的大小;
②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).
21.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.
22.(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:
(1)求出y与x的函数关系式.(纯利润=总收入-总支出)
(2)当y=106000时,求该厂在这个月中生产产品的件数.
23.(8分)计算:﹣|﹣2|+()﹣1﹣2cos45°
24.(10分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣
25.(10分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:
(1)收回问卷最多的一天共收到问卷_________份;
(2)本次活动共收回问卷共_________份;
(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?
(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?
26.(12分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.
27.(12分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?
(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
抓住黑白面积相等,根据概率公式可求出概率.
【详解】
因为,黑白区域面积相等,
所以,点落在黑色区域的概率是.
故选B
【点睛】
本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.
2、C
【解析】
根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.
【详解】
解:∵一次函数y=kx﹣b经过点(2,0),
∴2k﹣b=0,b=2k.
函数值y随x的增大而减小,则k<0;
解关于k(x﹣3)﹣b>0,
移项得:kx>3k+b,即kx>1k;
两边同时除以k,因为k<0,因而解集是x<1.
故选C.
【点睛】
本题考查一次函数与一元一次不等式.
3、C
【解析】
试题解析:∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°-120°=10°,
∴边数n=310°÷10°=1.
故选C.
考点:多边形内角与外角.
4、B
【解析】
根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:
A、不等式两边都减3,不等号的方向不变,正确;
B、乘以一个负数,不等号的方向改变,错误;
C、不等式两边都加3,不等号的方向不变,正确;
D、不等式两边都除以一个正数,不等号的方向不变,正确.
故选B.
5、C
【解析】
试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
试题解析:根据题意得:1-x≥0,
解得:x≤1.
故选C.
考点:函数自变量的取值范围.
6、B
【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
【详解】
解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.
【点睛】
本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
7、C
【解析】
分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.
详解:∵OB=1,AB⊥OB,点A在函数 (x<0)的图象上,
∴当x=−1时,y=2,
∴A(−1,2).
∵此矩形向右平移3个单位长度到的位置,
∴B1(2,0),
∴A1(2,2).
∵点A1在函数 (x>0)的图象上,
∴k=4,
∴反比例函数的解析式为,O1(3,0),
∵C1O1⊥x轴,
∴当x=3时,
∴P
故选C.
点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
8、D
【解析】
A.∵32+4+2+1+1=40(人),故A正确;
B. ∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;
C. ∵成绩是30分的人有32人,最多,故C 正确;
D. 该班学生这次考试成绩的中位数为30分,故D错误;
9、C
【解析】
根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
【详解】
∵|a|>|c|>|b|,
∴点A到原点的距离最大,点C其次,点B最小,
又∵AB=BC,
∴原点O的位置是在点B、C之间且靠近点B的地方.
故选:C.
【点睛】
此题考查了实数与数轴,理解绝对值的定义是解题的关键.
10、D
【解析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
11、B
【解析】
本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.
【详解】
①若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.
【点睛】
掌握分类讨论的方法是本题解题的关键.
12、B
【解析】
根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,通过观察发现,当涂黑②时,所形成的图形关于点A中心对称。故选B。
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x≠﹣5.
【解析】
根据分母不为零分式有意义,可得答案.
【详解】
由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.
【点睛】
本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.
14、y=﹣x+1
【解析】
根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.
【详解】
∵一次函数y随x的增大而减小,
∴k<0,
∵一次函数的解析式,过点(1,0),
∴满足条件的一个函数解析式是y=-x+1,
故答案为y=-x+1.
【点睛】
本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.
15、40°
【解析】
【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.
【详解】∵∠ADE=60°,
∴∠ADC=120°,
∵AD⊥AB,
∴∠DAB=90°,
∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,
故答案为40°.
【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.
16、
【解析】
分析:根据题意可以列出相应的方程组,从而可以解答本题.
详解:由题意可得,,
故答案为
点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
17、±1.
【解析】
试题分析:∵,∴4的平方根是±1.故答案为±1.
考点:平方根.
18、20
【解析】
先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.
【详解】
设黄球的个数为x个,
∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,
∴=60%,
解得x=30,
∴布袋中白色球的个数很可能是50-30=20(个).
故答案为:20.
【点睛】
本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.
【解析】
分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.
详解: (1)已知抛物线经过,,
∴,解得,
∴所求抛物线的解析式为.
(2)∵,,∴,,
可得旋转后点的坐标为.
当时,由得,
可知抛物线过点.
∴将原抛物线沿轴向下平移1个单位长度后过点.
∴平移后的抛物线解析式为:.
(3)∵点在上,可设点坐标为,
将配方得,∴其对称轴为.由题得B1(0,1).
①当时,如图①,
∵,
∴,
∴,
此时,
∴点的坐标为.
②当时,如图②,
同理可得,
∴,
此时,
∴点的坐标为.
综上,点的坐标为或.
点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.
20、(Ⅰ)(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)
【解析】
(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,
BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.
【详解】
(Ⅰ)如图1中,
∵A(0,1),
∴OA=1,
∵四边形OADC是正方形,
∴∠OAD=90°,AD=OA=1,
∴OD=AC==,
∴AB=BC=BD=BO=,
∵BD=DG,
∴BG=,
∴==.
(Ⅱ)①如图2中,
∵∠BAG′=90°,BG′=2AB,
∴sin∠AG′B==,
∴∠AG′B=30°,
∴∠ABG′=60°,
∴∠DBG′=30°,
∴旋转角α=30°,
根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,
综上所述,旋转角α=30°或150°时,∠BAG′=90°.
②如图3中,连接OF,
∵四边形BE′F′G′是正方形的边长为
∴BF′=2,
∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,
此时α=315°,F′(+,﹣)
【点睛】
本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.
21、详见解析.
【解析】
试题分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.
试题解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.
在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD, OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.
点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.
22、(1)y=19x-1(x>0且x是整数) (2)6000件
【解析】
(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;
(2)根据(1)中得出的式子,将y的值代入其中,求出x即可.
【详解】
(1)依题意得:y=80x-60x-0.5x•2-1,
化简得:y=19x-1,
∴所求的函数关系式为y=19x-1.(x>0且x是整数)
(2)当y=106000时,代入得:106000=19x-1,
解得x=6000,
∴这个月该厂生产产品6000件.
【点睛】
本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.
23、+1
【解析】
分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.
详解:原式=2﹣2+3﹣2×
=2+1﹣
=+1.
点睛:本题主要考查了实数运算,正确化简各数是解题的关键.
24、
【解析】
原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;
【详解】
解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab
=a2+b2,
当a=1、b=﹣时,
原式=12+(﹣)2
=1+
=.
【点睛】
考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.
25、18 60分
【解析】
分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;
(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;
(3)根据概率公式计算即可;
(4)分别计算第4天,第6天的获奖率后比较即可.
详解:(1)由图可知:第4天收到问卷最多,设份数为x,则:4:6=2:x,解得:x=18;
(2)2÷[4÷(2+3+4+6+4+1)]=60份;
(3)抽到第4天回收问卷的概率是;
(4)第4天收回问卷获奖率,第6天收回问卷获奖率.
∵,
∴第6天收回问卷获奖率高.
点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.
26、BD= 2.
【解析】
试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.
试题解析:
∵∠ACD=∠ABC,
又∵∠A=∠A,
∴△ABC∽△ACD ,
∴,
∵AC=,AD=1,
∴,
∴AB=3,
∴BD= AB﹣AD=3﹣1=2 .
点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.
27、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.
【解析】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;
(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解.
【详解】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,
由题意,得
,
解得:
.
答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;
(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,
由题意,得,
解得:41<m<1.
∵m是整数,
∴m=42,43,2.
则90-m=48,47,3.
答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;
方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;
方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.
【点睛】
本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.
相关试卷
这是一份重庆綦江长寿巴南三校联盟市级名校2022年中考联考数学试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=3,的相反数是,二次函数y=﹣等内容,欢迎下载使用。
这是一份江苏省东台市第四联盟市级名校2021-2022学年中考联考数学试卷含解析,共24页。试卷主要包含了|–|的倒数是等内容,欢迎下载使用。
这是一份江苏省东台市第六教育联盟市级名校2022年中考数学考前最后一卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果为正数的是等内容,欢迎下载使用。