湖北省黄石市富池片区重点中学2022年毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如果,那么( )
A. B. C. D.
2.按一定规律排列的一列数依次为:﹣,1,﹣,、﹣、…,按此规律,这列数中的第100个数是( )
A.﹣ B. C. D.
3.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )和黑子.
A.37 B.42 C.73 D.121
4.计算的结果是( ).
A. B. C. D.
5.已知反比例函数,下列结论不正确的是( )
A.图象必经过点(﹣1,2) B.y随x的增大而增大
C.图象在第二、四象限内 D.若,则
6.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( )
A. B. C. D.
7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )
A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
8.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2
9.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转( )
A.36° B.45° C.72° D.90°
10.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 ,,,,则四人中成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= .
12.分解因:=______________________.
13.计算()()的结果等于_____.
14.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.
15.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.
16.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.
三、解答题(共8题,共72分)
17.(8分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.
求证:DE是⊙O的切线;设△CDE的面积为 S1,四边形ABED的面积为 S1.若 S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=3,求⊙O的半径长.
18.(8分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:
(1)求购进的第一批文化衫的件数;
(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?
19.(8分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).
20.(8分)计算:﹣22﹣+|1﹣4sin60°|
21.(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
(Ⅰ)求发射台与雷达站之间的距离;
(Ⅱ)求这枚火箭从到的平均速度是多少(结果精确到0.01)?
22.(10分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:
(1)本班有多少同学优秀?
(2)通过计算补全条形统计图.
(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?
23.(12分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.
(1)求证:AE=BF;(2)若BE=,AG=2,求正方形的边长.
24.如图,已知∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE与BD相交于点O.求证:EC=ED.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:根据二次根式的性质,由此可知2-a≥0,解得a≤2.
故选B
点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.
2、C
【解析】
根据按一定规律排列的一列数依次为:,1,,,,…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,型;分子为型,可得第100个数为.
【详解】
按一定规律排列的一列数依次为:,1,,,,…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,型;分子为型,
可得第n个数为,
∴当时,这个数为,
故选:C.
【点睛】
本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.
3、C
【解析】
解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C.
点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
4、D
【解析】
根据同底数幂的乘除法运算进行计算.
【详解】
3x2y2×x3y2÷xy3=6x5y4÷xy3=6x4y.故答案选D.
【点睛】
本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.
5、B
【解析】
试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.
试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);
B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;
C、命题正确;
D、命题正确.
故选B.
考点:反比例函数的性质
6、B
【解析】
∵①对顶角相等,故此选项正确;
②若a>b>0,则<,故此选项正确;
③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;
④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;
⑤边长相等的多边形内角不一定都相等,故此选项错误;
∴从中任选一个命题是真命题的概率为:.
故选:B.
7、D
【解析】
试题解析:A、∵4+10+8+6+2=30(人),
∴参加本次植树活动共有30人,结论A正确;
B、∵10>8>6>4>2,
∴每人植树量的众数是4棵,结论B正确;
C、∵共有30个数,第15、16个数为5,
∴每人植树量的中位数是5棵,结论C正确;
D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
∴每人植树量的平均数约是4.73棵,结论D不正确.
故选D.
考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
8、A
【解析】
试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
故选A.
考点:二次函数图象与几何变换.
9、C
【解析】
分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
故选C.
点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
10、D
【解析】
根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
【详解】
∵0.45<0.51<0.62,
∴丁成绩最稳定,
故选D.
【点睛】
此题主要考查了方差,关键是掌握方差越小,稳定性越大.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、50°.
【解析】
解:连接DF,连接AF交CE于G,
∵EF为⊙O的切线,
∴∠OFE=90°,
∵AB为直径,H为CD的中点
∴AB⊥CD,即∠BHE=90°,
∵∠ACF=65°,
∴∠AOF=130°,
∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,
故答案为:50°.
12、 (x-2y)(x-2y+1)
【解析】
根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.
【详解】
=x2-4xy+4y2-2y+x
=(x-2y)2+x-2y
=(x-2y)(x-2y+1)
13、4
【解析】
利用平方差公式计算.
【详解】
解:原式=()2-()2
=7-3
=4.
故答案为:4.
【点睛】
本题考查了二次根式的混合运算.
14、4.1.
【解析】
取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.
【详解】
解:取CD的值中点M,连接GM,FM.
∵AG=CG,AE=EB,
∴GE是△ABC的中位线
∴EG=BC,
同理可证:FM=BC,EF=GM=AD,
∵AD=BC=6,
∴EG=EF=FM=MG=3,
∴四边形EFMG是菱形,
∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,
∴△EGF的面积的最大值为S四边形EFMG=4.1,
故答案为4.1.
【点睛】
本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.
15、1.
【解析】
连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
【详解】
连接BD,如图,
∵AD为△ABC的外接圆⊙O的直径,
∴∠ABD=90°,
∴∠D=90°﹣∠BAD=90°﹣50°=1°,
∴∠ACB=∠D=1°.
故答案为1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.
16、1
【解析】
试题分析:设点C的坐标为(x,y),则B(-2,y)D(x,-2),设BD的函数解析式为y=mx,则y=-2m,x=-,∴k=xy=(-2m)·(-)=1.
考点:求反比例函数解析式.
三、解答题(共8题,共72分)
17、(1)见解析;(1)tan∠BAC=;(3)⊙O的半径=1.
【解析】
(1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.
(1)由S1=5 S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=1:1,可得.则tan∠BAC的值可求;
(3)由(1)的关系即可知,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径.
【详解】
解:(1)连接OD,
∴OD=OB
∴∠ODB=∠OBD.
∵AB是直径,
∴∠ADB=90°,
∴∠CDB=90°.
∵E为BC的中点,
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵BC是以AB为直径的⊙O的切线,
∴AB⊥BC,
∴∠EBO=90°,
∴∠ODE=90°,
∴DE是⊙O的切线;
(1)∵S1=5 S1
∴S△ADB=1S△CDB
∴
∵△BDC∽△ADB
∴
∴DB1=AD•DC
∴
∴tan∠BAC==.
(3)∵tan∠BAC=
∴,得BC=AB
∵E为BC的中点
∴BE=AB
∵AE=3,
∴在Rt△AEB中,由勾股定理得
,解得AB=4
故⊙O的半径R=AB=1.
【点睛】
本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.
18、(1)50件;(2)120元.
【解析】
(1)设第一批购进文化衫x件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y元,根据利润=销售单价×销售数量-进货总价,即可得出关于y的一元一次不等式,解之取其内的最小值即可得出结论.
【详解】
解:(1)设第一批购进文化衫x件,
根据题意得: +10=,
解得:x=50,
经检验,x=50是原方程的解,且符合题意,
答:第一批购进文化衫50件;
(2)第二批购进文化衫(1+40%)×50=70(件),
设该服装店销售该品牌文化衫每件的售价为y元,
根据题意得:(50+70)y﹣4000﹣6300≥4100,
解得:y≥120,
答:该服装店销售该品牌文化衫每件最低售价为120元.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
19、(1).(2)公平.
【解析】
试题分析:(1)首先根据题意结合概率公式可得答案;
(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.
试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;
(2)列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,
∴P(两张都是轴对称图形)=,因此这个游戏公平.
考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.
20、-1
【解析】
直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.
【详解】
解:原式=
=
=﹣1.
【点睛】
此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.
21、 (Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.
【解析】
(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.
【详解】
(Ⅰ)在中,,≈0.74,
∴.
答:发射台与雷达站之间的距离约为.
(Ⅱ)在中,,
∴.
∵在中,,
∴.
∴.
答:这枚火箭从到的平均速度大约是.
【点睛】
本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.
22、(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.
【解析】
(1)根据统计图即可得出结论;
(2)先计算出优秀的学生,再补齐统计图即可;
(3)根据图2的数值计算即可得出结论.
【详解】
(1)本班有学生:20÷50%=40(名),
本班优秀的学生有:40﹣40×30%﹣20﹣4=4(名),
答:本班有4名同学优秀;
(2)成绩一般的学生有:40×30%=12(名),
成绩优秀的有4名同学,
补全的条形统计图,如图所示;
(3)3000×50%=1500(名),
答:该校3000人有1500人成绩良好.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点.
23、(1)见解析;(2)正方形的边长为.
【解析】
(1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;
(2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
∴∠BAE+∠AEB=90°,
∵AE⊥BF,垂足为G,
∴∠CBF+∠AEB=90°,
∴∠BAE=∠CBF,
在△ABE与△BCF中,
,
∴△ABE≌△BCF(ASA),
∴AE=BF;
(2)解:∵四边形ABCD为正方形,
∴∠ABC=90°,
∵AE⊥BF,
∴∠BGE=∠ABE=90°,
∵∠BEG=∠AEB,
∴△BGE∽△ABE,
∴=,
即:BE2=EG•AE,
设EG=x,则AE=AG+EG=2+x,
∴()2=x•(2+x),
解得:x1=1,x2=﹣3(不合题意舍去),
∴AE=3,
∴AB===.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.
24、见解析
【解析】
由∠1=∠2,可得∠BED=∠AEC,根据利用ASA可判定△BED≌△AEC,然后根据全等三角形的性质即可得证.
【详解】
解:∵∠1=∠2,
∴∠1+∠AED=∠2+∠AED,
即∠BED=∠AEC,
在△BED和△AEC中,
,
∴△BED≌△AEC(ASA),
∴ED=EC.
【点睛】
本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
湖北省黄石市富池片区2023-2024学年数学九上期末联考试题含答案: 这是一份湖北省黄石市富池片区2023-2024学年数学九上期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角尺,下列事件是随机事件的是等内容,欢迎下载使用。
2023-2024学年湖北省黄石市富池片区八上数学期末统考模拟试题含答案: 这是一份2023-2024学年湖北省黄石市富池片区八上数学期末统考模拟试题含答案,共7页。试卷主要包含了直线y=k1x+b1等内容,欢迎下载使用。
浙江杭州余杭区重点中学2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份浙江杭州余杭区重点中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了如图图形中,是中心对称图形的是等内容,欢迎下载使用。