湖北省广水市达标名校2021-2022学年中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=( )
A. B. C. D.
2.式子在实数范围内有意义,则x的取值范围是( )
A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
3.下列计算结果是x5的为( )
A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
4.下列计算正确的是( )
A.a4+a5=a9 B.(2a2b3)2=4a4b6
C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2
5.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )
A.4b+2c B.0 C.2c D.2a+2c
6.如图所示的几何体的俯视图是( )
A. B. C. D.
7.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( ).
A. B. C. D.
8.边长相等的正三角形和正六边形的面积之比为( )
A.1∶3 B.2∶3 C.1∶6 D.1∶
9.下列函数中,当x>0时,y值随x值增大而减小的是( )
A.y=x2 B.y=x﹣1 C. D.
10.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )
A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣8
11.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )
A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣1
12.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )
A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.
14.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.
15.某风扇在网上累计销量约1570000台,请将1570000用科学记数法表示为_____.
16.函数的定义域是________.
17.已知抛物线 的部分图象如图所示,根据函数图象可知,当 y>0 时,x 的取值范围是__.
18.分解因式:4a2﹣1=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
依题意补全图形;
求的度数;
若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.
20.(6分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=.
(1)求∠C的度数;
(2)求证:BC是⊙O的切线.
21.(6分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类
A
B
C
D
E
出行方式
共享单车
步行
公交车
的士
私家车
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.
22.(8分)综合与探究:
如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
(1)求A、B两点的坐标及直线l的表达式;
(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
①请直接写出A′的坐标(用含字母t的式子表示);
②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.
23.(8分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
分组
频数
频率
0.5~50.5
0.1
50.5~
20
0.2
100.5~150.5
200.5
30
0.3
200.5~250.5
10
0.1
率分布表和频率分布直方图(如图).
(1)补全频率分布表;
(2)在频率分布直方图中,长方形ABCD的面积是 ;这次调查的样本容量是 ;
(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.
24.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:
组别
身高
A
x<160
B
160≤x<165
C
165≤x<170
D
170≤x<175
E
x≥175
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在 组,中位数在 组;
(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;
(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?
25.(10分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.
(1)求两批次购蔬菜各购进多少吨?
(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
26.(12分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍.
(1)求降价后乙种水果的售价是多少元/斤?
(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?
27.(12分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.
请你根据图中信息,回答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;
(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.
【详解】
∵D(0,3),C(4,0),
∴OD=3,OC=4,
∵∠COD=90°,
∴CD= =5,
连接CD,如图所示:
∵∠OBD=∠OCD,
∴cos∠OBD=cos∠OCD= .
故选:C.
【点睛】
本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.
2、B
【解析】
根据二次根式有意义的条件可得 ,再解不等式即可.
【详解】
解:由题意得:,
解得:,
故选:B.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
3、C
【解析】解:A.x10÷x2=x8,不符合题意;
B.x6﹣x不能进一步计算,不符合题意;
C.x2x3=x5,符合题意;
D.(x3)2=x6,不符合题意.
故选C.
4、B
【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.
详解:A、a4与a5不是同类项,不能合并,故本选项错误;
B、(2a2b3)2=4a4b6,故本选项正确;
C、-2a(a+3)=-2a2-6a,故本选项错误;
D、(2a-b)2=4a2-4ab+b2,故本选项错误;
故选:B.
点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.
5、A
【解析】
由数轴上点的位置得:b|c|>|a|,
∴a+c>0,a−2b>0,c+2b<0,
则原式=a+c−a+2b+c+2b=4b +2c.
故选:B.
点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.
6、D
【解析】
试题分析:根据俯视图的作法即可得出结论.
从上往下看该几何体的俯视图是D.故选D.
考点:简单几何体的三视图.
7、D
【解析】
设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.
解:∵,..又∵过点,交于点,∴,
∴,∴.故选D.
8、C
【解析】
解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•=a,∴S△ABC=BC•AD=×1a×a=a1.
连接OA、OB,过O作OD⊥AB.
∵∠AOB==20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•=a,∴S△ABO=BA•OD=×1a×a=a1,∴正六边形的面积为:2a1, ∴边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2.故选C.
点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.
9、D
【解析】
A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误
B、k>0,y随x增大而增大,故此选项错误
C、B、k>0,y随x增大而增大,故此选项错误
D、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确
10、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000071的小数点向或移动7位得到7.1,
所以0.00000071用科学记数法表示为7.1×10﹣7,
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
11、C
【解析】
试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.
考点:科学记数法—表示较小的数.
12、A
【解析】
观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.
【详解】
解:依题意,得:b=a+1,c=a+7,d=a+1.
A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,
∴a﹣d≠b﹣c,选项A符合题意;
B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,
∴a+c+2=b+d,选项B不符合题意;
C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,
∴a+b+14=c+d,选项C不符合题意;
D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,
∴a+d=b+c,选项D不符合题意.
故选:A.
【点睛】
考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、13
【解析】
根据同时同地物高与影长成比列式计算即可得解.
【详解】
解:设旗杆高度为x米,
由题意得,,
解得x=13.
故答案为13.
【点睛】
本题考查投影,解题的关键是应用相似三角形.
14、1
【解析】
在△AGF和△ACF中,
,
∴△AGF≌△ACF,
∴AG=AC=4,GF=CF,
则BG=AB−AG=6−4=2.
又∵BE=CE,
∴EF是△BCG的中位线,
∴EF=BG=1.
故答案是:1.
15、1.57×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将1570000用科学记数法表示为1.57×1.
故答案为1.57×1.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
16、x≥-1
【解析】
分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
详解:根据题意得:x+1≥0,解得:x≥﹣1.
故答案为x≥﹣1.
点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:
(1)当函数表达式是整式时,定义域可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(1)当函数表达式是二次根式时,被开方数非负.
17、
【解析】
根据抛物线的对称轴以及抛物线与x轴的一个交点,确定抛物线与x轴的另一个交点,再结合图象即可得出答案.
【详解】
解:根据二次函数图象可知:
抛物线的对称轴为直线,与x轴的一个交点为(-1,0),
∴抛物线与x轴的另一个交点为(3,0),
结合图象可知,当 y>0 时,即x轴上方的图象,对应的x 的取值范围是,
故答案为: .
【点睛】
本题考查了二次函数与不等式的问题,解题的关键是通过图象确定抛物线与x轴的另一个交点,并熟悉二次函数与不等式的关系.
18、(2a+1)(2a﹣1)
【解析】
有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.
【详解】
4a2﹣1=(2a+1)(2a﹣1).
故答案为:(2a+1)(2a-1).
【点睛】
此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)见解析;(2)90°;(3)解题思路见解析.
【解析】
(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
(2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
(3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
【详解】
解:如图,
线段AD绕点A逆时针方向旋转,得到线段AE.
,,
.
,
.
,
在和中
,
≌.
,
中,,,
.
;
Ⅰ连接DE,由于为等腰直角三角形,所以可求;
Ⅱ由,,可求的度数和的度数,从而可知DF的长;
Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
Ⅳ由DF、DH的长可求HF的长;
Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
故答案为(1)见解析;(2)90°;(3)解题思路见解析.
【点睛】
本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
20、(1)60°;(2)见解析
【解析】
(1)连接BD,由AD为圆的直径,得到∠ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出∠CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出∠C的度数;
(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出∠ABC度数,由∠ABC﹣∠ABO度数确定出∠OBC度数为90,即可得证;
【详解】
(1)如图,连接BD,
∵AD为圆O的直径,
∴∠ABD=90°,
∴BD=AD=3,
∵CD∥AB,∠ABD=90°,
∴∠CDB=∠ABD=90°,
在Rt△CDB中,tanC=,
∴∠C=60°;
(2)连接OB,
∵∠A=30°,OA=OB,
∴∠OBA=∠A=30°,
∵CD∥AB,∠C=60°,
∴∠ABC=180°﹣∠C=120°,
∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,
∴OB⊥BC,
∴BC为圆O的切线.
【点睛】
此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.
21、(1)800,240;(2)补图见解析;(3)9.6万人.
【解析】
试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;
(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;
(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.
试题解析:(1)本次调查的市民有200÷25%=800(人),
∴B类别的人数为800×30%=240(人),
故答案为800,240;
(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,
∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),
补全条形图如下:
(3)12×(25%+30%+25%)=9.6(万人),
答:估计该市“绿色出行”方式的人数约为9.6万人.
考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图
22、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
(2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
(3)存在,P点坐标为(,)或(,﹣).
【解析】
(1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
【详解】
(1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
设直线l的解析式为y=kx+b,
把A(﹣1,0),D(0,﹣)代入得,解得,
∴直线l的解析式为y=﹣x﹣;
(2)①作A′H⊥x轴于H,如图,
∵OA=1,OD=,
∴∠OAD=60°,
∵EF∥AD,
∴∠AEF=60°,
∵点A 关于直线l的对称点为A′,
∴EA=EA′=t,∠A′EF=∠AEF=60°,
在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
∴OH=OE+EH=t﹣1+t=t﹣1,
∴A′(t﹣1, t);
②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
解得t1=0(舍去),t2=2,
∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
此时四边形A′BEF为菱形,理由如下:
当t=2时,A′点的坐标为(2,),E(1,0),
∵∠OEF=60°
∴OF=OE=,EF=2OE=2,
∴F(0,),
∴A′F∥x轴,
∵A′F=BE=2,A′F∥BE,
∴四边形A′BEF为平行四边形,
而EF=BE=2,
∴四边形A′BEF为菱形;
(3)存在,如图:
当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
∵OE=t﹣1=,
∴此时P点坐标为(,);
当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,
∵∠AEA′=120°,
∴∠A′EB=60°,
∴∠EBA′=30°
∴BQ=A′Q=•t=t,
∴t﹣1+t=3,解得t=,
此时A′(1,),E(,0),
点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
综上所述,满足条件的P点坐标为(,)或(,﹣).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.
23、⑴表格中依次填10,100.5,25,0.25,150.5,1;
⑵0.25,100;
⑶1000×(0.3+0.1+0.05)=450(名).
【解析】
(1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5; 0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..
【详解】
解:填表如下:
(2)长方形ABCD的面积为0.25,样本容量是100;
提出这项建议的人数人.
【点睛】
本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.
24、(1)B,C;(2)2;(3)该校身高在165≤x<175之间的学生约有462人.
【解析】
根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.
【详解】
解:(1)∵直方图中,B组的人数为12,最多,
∴男生的身高的众数在B组,
男生总人数为:4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴男生的身高的中位数在C组,
故答案为B,C;
(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有:40×5%=2(人),
故答案为2;
(3)600×+480×(25%+15%)=270+192=462(人).
答:该校身高在165≤x<175之间的学生约有462人.
【点睛】
考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.
25、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.
【解析】
(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨.构建方程组即可解决问题.
(2)设精加工x吨,利润为w元,则粗加工(100-x)吨.利润w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解决问题.
【详解】
(1)设第一次购进a吨,第二次购进b吨,
,
解得 ,
答:第一次购进40吨,第二次购进160吨;
(2)设精加工x吨,利润为w元,
w=800x+400(200﹣x)=400x+80000,
∵x≤3(200﹣x),
解得,x≤150,
∴当x=150时,w取得最大值,此时w=1,
答:为获得最大利润,精加工数量应为150吨,最大利润是1.
【点睛】
本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.
26、(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤.
【解析】
(1)设降价后乙种水果的售价是x元, 30元可购买乙种水果的斤数是,原来购买乙种水果斤数是,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500﹣y)斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可.
【详解】
解:(1)设降价后乙种水果的售价是x元,根据题意可得:
,
解得:x=2,经检验x=2是原方程的解,
答:降价后乙种水果的售价是2元/斤;
(2)设至少购进乙种水果y斤,根据题意可得:
2(500﹣y)+1.5y≤900,
解得:y≥200,
答:至少购进乙种水果200斤.
【点睛】
本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键
27、(1)共调查了50名学生;统计图见解析;(2)72°;(3).
【解析】
(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;
(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;
(3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.
【详解】
解:(1)14÷28%=50,
∴本次共调查了50名学生.
补全条形统计图如下.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.
(3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.
共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,
∴抽取的2名学生恰好来自同一个班级的概率P==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析: 这是一份青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据,下列命题中真命题是,点M等内容,欢迎下载使用。
湖北省广水市达标名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份湖北省广水市达标名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了要使式子有意义,x的取值范围是,若分式有意义,则的取值范围是等内容,欢迎下载使用。
2021-2022学年山东省武城县达标名校中考数学仿真试卷含解析: 这是一份2021-2022学年山东省武城县达标名校中考数学仿真试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,﹣的绝对值是,对于数据,分式方程=1的解为,实数4的倒数是,下列运算结果是无理数的是,如图,过点A等内容,欢迎下载使用。