|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北省张家口市蔚县2021-2022学年中考数学四模试卷含解析
    立即下载
    加入资料篮
    河北省张家口市蔚县2021-2022学年中考数学四模试卷含解析01
    河北省张家口市蔚县2021-2022学年中考数学四模试卷含解析02
    河北省张家口市蔚县2021-2022学年中考数学四模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省张家口市蔚县2021-2022学年中考数学四模试卷含解析

    展开
    这是一份河北省张家口市蔚县2021-2022学年中考数学四模试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列图形是中心对称图形的是,下列各数中,最小的数是,一组数据1,2,3,3,4,1等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )
    A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣6
    2.若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )
    A.矩形 B.菱形
    C.对角线互相垂直的四边形 D.对角线相等的四边形
    3.下列运算正确的是(  )
    A.(a2)5=a7 B.(x﹣1)2=x2﹣1
    C.3a2b﹣3ab2=3 D.a2•a4=a6
    4.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )
    A. B. C. D.
    5.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为(  )

    A.15° B.55° C.65° D.75°
    6.下列图形是中心对称图形的是( )
    A. B. C. D.
    7.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    8.下列各数中,最小的数是
    A. B. C.0 D.
    9.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是(  )
    A.平均数 B.众数 C.中位数 D.方差
    10.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是(  )
    A. B. C. D.
    11.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
    成绩(米)






    人数






    则这名运动员成绩的中位数、众数分别是( )
    A. B. C., D.
    12.不等式﹣x+1>3的解集是(  )
    A.x<﹣4 B.x>﹣4 C.x>4 D.x<4
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.与是位似图形,且对应面积比为4:9,则与的位似比为______.
    14.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=_____.

    15.有一组数据:3,5,5,6,7,这组数据的众数为_____.
    16.如图,在中,AB为直径,点C在上,的平分线交于D,则______

    17.如图,中,,,,,平分,与相交于点,则的长等于_____.

    18.如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.求证:四边形ADCE是矩形;①若AB=17,BC=16,则四边形ADCE的面积=   .
    ②若AB=10,则BC=   时,四边形ADCE是正方形.

    20.(6分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:
    产品名称
    核桃
    花椒
    甘蓝
    每辆汽车运载量(吨)
    10
    6
    4
    每吨土特产利润(万元)
    0.7
    0.8
    0.5
    若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.
    (1)求y与x之间的函数关系式;
    (2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.
    21.(6分)探究:
    在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手   次:;若参加聚会的人数为5,则共握手   次;若参加聚会的人数为n(n为正整数),则共握手   次;若参加聚会的人共握手28次,请求出参加聚会的人数.
    拓展:
    嘉嘉给琪琪出题:
    “若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”
    琪琪的思考:“在这个问题上,线段总数不可能为30”
    琪琪的思考对吗?为什么?
    22.(8分)在平面直角坐标系xOy中,将抛物线(m≠0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点.
    (1)直接写出点A的坐标;
    (2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点.
    ①当∠BAC=90°时.求抛物线G2的表达式;
    ②若60°<∠BAC<120°,直接写出m的取值范围.
    23.(8分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.

    24.(10分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.
    如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
    25.(10分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?
    译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?
    26.(12分)如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.
    (1)求k的值.
    (2)判断点A是否可与点B重合;
    (3)若抛物线与BC有交点,求b的取值范围.

    27.(12分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.

    (1)图1中3条弧的弧长的和为   ,图2中4条弧的弧长的和为   ;
    (2)求图m中n条弧的弧长的和(用n表示).



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
    【详解】
    解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.
    故选D.
    2、C
    【解析】
    【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.
    【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,
    ∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
    ∴EH∥FG,EH=FG,
    ∴四边形EFGH是平行四边形,
    假设AC=BD,
    ∵EH=AC,EF=BD,
    则EF=EH,
    ∴平行四边形EFGH是菱形,
    即只有具备AC=BD即可推出四边形是菱形,
    故选D.

    【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.
    3、D
    【解析】
    根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
    【详解】
    A、(a2)5=a10,故原题计算错误;
    B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
    C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
    D、a2•a4=a6,故原题计算正确;
    故选:D.
    【点睛】
    此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
    4、A
    【解析】
    让黄球的个数除以球的总个数即为所求的概率.
    【详解】
    解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
    故选:A.
    【点睛】
    本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
    5、D
    【解析】
    根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.
    【详解】
    解:∵∠CDE=165°,∴∠ADE=15°,
    ∵DE∥AB,∴∠A=∠ADE=15°,
    ∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,
    故选D.
    【点睛】
    本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.
    6、B
    【解析】
    根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
    A、不是中心对称图形,故本选项错误;
    B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误.
    故选B.
    考点:中心对称图形.
    【详解】
    请在此输入详解!
    7、C
    【解析】
    由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.
    【详解】
    详解:∵四边形ABCD是正方形,
    ∴AD=BC,
    ∵BP=CQ,
    ∴AP=BQ,
    在△DAP与△ABQ中,
    ∴△DAP≌△ABQ,
    ∴∠P=∠Q,



    ∴AQ⊥DP;
    故①正确;
    ②无法证明,故错误.
    ∵BP=1,AB=3,



    ∴ 故③正确,
    故选C.
    【点睛】
    考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.
    8、A
    【解析】
    应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.
    【详解】
    解:因为在数轴上-3在其他数的左边,所以-3最小;
    故选A.
    【点睛】
    此题考负数的大小比较,应理解数字大的负数反而小.
    9、D
    【解析】
    A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;
    添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;
    ∴平均数不发生变化.
    B. ∵原众数是:3;
    添加一个数据3后的众数是:3;
    ∴众数不发生变化;
    C. ∵原中位数是:3;
    添加一个数据3后的中位数是:3;
    ∴中位数不发生变化;
    D. ∵原方差是:;
    添加一个数据3后的方差是:;
    ∴方差发生了变化.
    故选D.
    点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.
    10、C
    【解析】
    【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
    【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;
    B、不是中心对称图形,是轴对称图形,故本选项错误;
    C、既不是中心对称图形,也不是轴对称图形,故本选项正确;
    D、是中心对称图形,不是轴对称图形,故本选项错误,
    故选C.
    【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
    11、D
    【解析】
    根据中位数、众数的定义即可解决问题.
    【详解】
    解:这些运动员成绩的中位数、众数分别是4.70,4.1.
    故选:D.
    【点睛】
    本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
    12、A
    【解析】
    根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.
    【详解】
    移项得:−x>3−1,
    合并同类项得:−x>2,
    系数化为1得:x<-4.
    故选A.
    【点睛】
    本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2:1
    【解析】
    由相似三角形的面积比等于相似比的平方,即可求得与的位似比.
    【详解】
    解与是位似图形,且对应面积比为4:9,
    与的相似比为2:1,
    故答案为:2:1.
    【点睛】
    本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.
    14、.
    【解析】
    连接OD,OC,AD,由⊙O的直径AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根据勾股定理可求出AD的长,在Rt△ADE中,利用∠DAC的正切值求解即可.
    【详解】
    解:连接OD,OC,AD,
    ∵半圆O的直径AB=7,
    ∴OD=OC=,
    ∵CD=,
    ∴OD=CD=OC
    ∴∠DOC=60°,∠DAC=30°
    又∵AB=7,BD=5,

    在Rt△ADE中,
    ∵∠DAC=30°,
    ∴DE=AD•tan30°
    故答案为

    【点睛】
    本题考查了圆周角定理、等边三角形的判定与性质,勾股定理的应用等知识;综合性比较强.
    15、1
    【解析】
    根据众数的概念进行求解即可得.
    【详解】
    在数据3,1,1,6,7中1出现次数最多,
    所以这组数据的众数为1,
    故答案为:1.
    【点睛】
    本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键.
    16、1
    【解析】
    由AB为直径,得到,由因为CD平分,所以,这样就可求出.
    【详解】
    解:为直径,

    又平分,


    故答案为1.
    【点睛】
    本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度.
    17、3
    【解析】
    如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.
    【详解】
    如图,延长CE、DE,分别交AB于G、H,
    ∵∠BAD=∠ADE=60°,
    ∴△ADH是等边三角形,
    ∴DH=AD=AH=5,∠DHA=60°,
    ∵AC=BC,CE平分∠ACB,∠ACB=90°,
    ∴AB==8,AG=AB=4,CG⊥AB,
    ∴GH=AH=AG=5-4=1,
    ∵∠DHA=60°,
    ∴∠GEH=30°,
    ∴EH=2GH=2
    ∴DE=DH-EH=5=2=3.

    故答案为:3
    【点睛】
    本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.
    18、10
    【解析】
    根据翻折的特点得到,.设,则.在中,,即,解出x,再根据三角形的面积进行求解.
    【详解】
    ∵翻折,∴,,
    又∵,
    ∴,
    ∴.设,则.
    在中,,即,
    解得,
    ∴,
    ∴.
    【点睛】
    此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)见解析;(2)①1; ②.
    【解析】
    试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;
    (2)①求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;
    ②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的长.
    试题解析:(1)证明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四边形ADCE是平行四边形.∵AD是BC边上的高,∴∠ADC=90°.∴□ADCE是矩形.
    (2)①解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四边形ADCE的面积是AD×DC=12×8=1.
    ②当BC=时,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.

    点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.
    20、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
    【解析】
    (1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;
    (1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.
    【详解】
    (1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,
    根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.
    (1)根据题意得:,
    解得:7≤x≤,
    ∵x为整数,
    ∴7≤x≤2.
    ∵10.6>0,
    ∴y随x增大而减小,
    ∴当x=7时,y取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.
    答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
    【点睛】
    本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.
    21、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.
    【解析】
    探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
    (2)由(1)的结论结合参会人数为n,即可得出结论;
    (3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;
    拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.
    【详解】
    探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.
    故答案为3;1.
    (2)∵参加聚会的人数为n(n为正整数),
    ∴每人需跟(n-1)人握手,
    ∴握手总数为.
    故答案为.
    (3)依题意,得:=28,
    整理,得:n2-n-56=0,
    解得:n1=8,n2=-7(舍去).
    答:参加聚会的人数为8人.
    拓展:琪琪的思考对,理由如下:
    如果线段数为2,则由题意,得:=2,
    整理,得:m2-m-60=0,
    解得m1=,m2=(舍去).
    ∵m为正整数,
    ∴没有符合题意的解,
    ∴线段总数不可能为2.
    【点睛】
    本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.
    22、(1)(,2);(2)①y=(x-)2+2;②
    【解析】
    (1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;
    (2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;
    ②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.
    【详解】
    (1)∵将抛物线G1:y=mx2+2(m≠0)向右平移个单位长度后得到抛物线G2,
    ∴抛物线G2:y=m(x-)2+2,
    ∵点A是抛物线G2的顶点.
    ∴点A的坐标为(,2).
    (2)①设抛物线对称轴与直线l交于点D,如图1所示.
    ∵点A是抛物线顶点,
    ∴AB=AC.
    ∵∠BAC=90°,
    ∴△ABC为等腰直角三角形,
    ∴CD=AD=,
    ∴点C的坐标为(2,).
    ∵点C在抛物线G2上,
    ∴=m(2-)2+2,
    解得:.
    ②依照题意画出图形,如图2所示.
    同理:当∠BAC=60°时,点C的坐标为(+1,);
    当∠BAC=120°时,点C的坐标为(+3,).
    ∵60°<∠BAC<120°,
    ∴点(+1,)在抛物线G2下方,点(+3,)在抛物线G2上方,
    ∴,
    解得:.


    【点睛】
    此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.
    23、 (1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.
    【解析】
    (1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.
    【详解】
    解:(1)△APD≌△CPD.
    理由:∵四边形ABCD是菱形,
    ∴AD=CD,∠ADP=∠CDP.
    又∵PD=PD,∴△APD≌△CPD(SAS).
    (2)∵△APD≌△CPD,
    ∴∠DAP=∠DCP,
    ∵CD∥AB,
    ∴∠DCF=∠DAP=∠CFB,
    又∵∠FPA=∠FPA,
    ∴△APE∽△FPA(两组角相等则两三角形相似).
    (3)猜想:PC2=PE•PF.
    理由:∵△APE∽△FPA,
    ∴即PA2=PE•PF.
    ∵△APD≌△CPD,
    ∴PA=PC.
    ∴PC2=PE•PF.

    【点睛】
    本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.
    24、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
    【解析】
    (1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
    (2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
    (1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
    【详解】
    (1)∵△CDE是等边三角形,
    ∴∠CED=60°,
    ∴∠EDB=60°﹣∠B=10°,
    ∴∠EDB=∠B,
    ∴DE=EB;
    (2) ED=EB, 理由如下:
    取AB的中点O,连接CO、EO,
    ∵∠ACB=90°,∠ABC=10°,
    ∴∠A=60°,OC=OA,
    ∴△ACO为等边三角形,
    ∴CA=CO,
    ∵△CDE是等边三角形,
    ∴∠ACD=∠OCE,
    ∴△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,
    ∴△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB;
    (1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB,
    ∵EH⊥AB,
    ∴DH=BH=1,
    ∵GE∥AB,
    ∴∠G=180°﹣∠A=120°,
    ∴△CEG≌△DCO,
    ∴CG=OD,
    设CG=a,则AG=5a,OD=a,
    ∴AC=OC=4a,
    ∵OC=OB,
    ∴4a=a+1+1,
    解得,a=2,
    即CG=2.

    25、每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩.
    【解析】
    设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.
    【详解】
    解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩.
    可列方程组为
    解得
    答:每亩山田相当于实田0.9亩,每亩场地相当于实田亩.
    26、(1)12;(2)点A不与点B重合;(3)
    【解析】
    (1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;
    (2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;
    (3)当抛物线经过点B(4,3)时,解得,b= ,抛物线右半支经过点B;当抛物线经过点C,解得,b=,抛物线右半支经过点C;从而求得b的取值范围为≤b≤.
    【详解】
    解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数 的图象上,
    ∴k=4(1﹣m)=6×(﹣m),
    ∴解得m=﹣2,
    ∴k=4×[1﹣(﹣2)]=12;
    (2)∵m=﹣2,∴B(4,3),
    ∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,
    ∴A(b,b2).
    若点A与点B重合,则有b=4,且b2=3,显然不成立,
    ∴点A不与点B重合;
    (3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,
    解得,b=,
    显然抛物线右半支经过点B;
    当抛物线经过点C(6,2)时,有2=﹣62+2b×6,
    解得,b=,
    这时仍然是抛物线右半支经过点C,
    ∴b的取值范围为≤b≤.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题.
    27、 (1)π, 2π;(2)(n﹣2)π.
    【解析】
    (1)利用弧长公式和三角形和四边形的内角和公式代入计算;
    (2)利用多边形的内角和公式和弧长公式计算.
    【详解】
    (1)利用弧长公式可得
    =π,
    因为n1+n2+n3=180°.
    同理,四边形的==2π,
    因为四边形的内角和为360度;
    (2)n条弧==(n﹣2)π.
    【点睛】
    本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.

    相关试卷

    2023年河北省张家口市蔚县代王城中学中考数学模拟试卷(含解析): 这是一份2023年河北省张家口市蔚县代王城中学中考数学模拟试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年河北省张家口市、保定市、石家庄市中考数学四模试卷(含解析): 这是一份2023年河北省张家口市、保定市、石家庄市中考数学四模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    张家口市重点中学2021-2022学年中考数学四模试卷含解析: 这是一份张家口市重点中学2021-2022学年中考数学四模试卷含解析,共22页。试卷主要包含了一元一次不等式2,“绿水青山就是金山银山”,计算3–,下列实数中,最小的数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map