第3章二次函数(解答题中档题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
展开
这是一份第3章二次函数(解答题中档题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共30页。
第3章二次函数(解答题中档题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
一.抛物线与x轴的交点(共1小题)
1.(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).
(1)求m的值;
(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.
二.二次函数的应用(共9小题)
2.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.
(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;
(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
3.(2022•临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:
如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距离x(m)具备二次函数关系,其解析式为y=﹣x2+bx+c.
(1)求b,c的值;
(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.
①求x关于t的函数解析式;
②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?
4.(2022•威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.
5.(2021•德州)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的成本y(万元)与产品数量x(件)之间具有函数关系y=x2+20x+100,B城生产产品的每件成本为60万元.
(1)当A城生产多少件产品时,A,B两城生产这批产品成本的和最小,最小值是多少?
(2)从A城把该产品运往C,D两地的费用分别为1万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(1)的条件下,怎样调运可使A,B两城运费的和最小?
6.(2021•济宁)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
7.(2021•临沂)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.
(1)当甲车减速至9m/s时,它行驶的路程是多少?
(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?
8.(2020•潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求y与x之间的函数表达式;
(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)
9.(2020•日照)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).
(1)若四块矩形花圃的面积相等,求证:AE=3BE;
(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.
10.(2020•青岛)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.
(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;
(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)
(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?
三.二次函数综合题(共6小题)
11.(2022•潍坊)为落实“双减”,老师布置了一项这样的课后作业:
二次函数的图象经过点(﹣1,﹣1),且不经过第一象限,写出满足这些条件的一个函数表达式.
【观察发现】
请完成作业,并在直角坐标系中画出大致图象.
【思考交流】
小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”
小莹说:“满足条件的函数图象一定在x轴的下方.”
你认同他们的说法吗?若不认同,请举例说明.
【概括表达】
小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数y=ax2+bx+c的图象与系数a,b,c的关系,得出了提高老师作业批阅效率的方法.
请你探究这个方法,写出探究过程.
12.(2021•德州)小刚在用描点法画抛物线C1:y=ax2+bx+c时,列出了下面的表格:
x
…
0
1
2
3
4
…
y
…
3
6
7
6
3
…
(1)请根据表格中的信息,写出抛物线C1的一条性质: ;
(2)求抛物线C1的解析式;
(3)将抛物线C1先向下平移3个单位长度,再向左平移4个单位长度,得到新的抛物线C2;
①若直线y=x+b与两抛物线C1,C2共有两个公共点,求b的取值范围;
②抛物线C2的顶点为A,与x轴交点为点B,C(点B在点C左侧),点P(不与点A重合)在第二象限内,且为C2上任意一点,过点P作PD⊥x轴,垂足为D,直线AP交y轴于点Q,连接AB,DQ.求证:AB∥DQ.
13.(2021•泰安)二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点,连接BP、AC,交于点Q,过点P作PD⊥x轴于点D.
(1)求二次函数的表达式;
(2)连接BC,当∠DPB=2∠BCO时,求直线BP的表达式;
(3)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由.
14.(2020•济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.
(1)求抛物线的解析式及C点坐标;
(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;
(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.
15.(2020•烟台)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
(1)求抛物线的表达式;
(2)当线段DF的长度最大时,求D点的坐标;
(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
16.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
第3章二次函数(解答题中档题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
参考答案与试题解析
一.抛物线与x轴的交点(共1小题)
1.(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).
(1)求m的值;
(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.
【解答】解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,
解得m1=1,m2=﹣3,
又∵m>0,
∴m=1.
(2)∵m=1,
∴y=x2+x﹣2,
∵Δ=b2﹣4ac=12+8=9>0,
∴二次函数图象与x轴有2个交点.
二.二次函数的应用(共9小题)
2.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.
(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;
(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
【解答】解:(1)根据题意得:y=8.2﹣0.2(x﹣1)=﹣0.2x+8.4(1≤x≤10,x为整数),
答:这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式为y=﹣0.2x+8.4(1≤x≤10,x为整数);
(2)设李大爷每天所获利润是w元,
由题意得:w=[12﹣0.5(x﹣1)﹣(﹣0.2x+8.4)]×10x=﹣3x2+41x=﹣3(x﹣)2+,
∵﹣3<0,x为正整数,且|6﹣|>|7﹣|,
∴x=7时,w取最大值,最大值为﹣3×(7﹣)2+=140(元),
答:李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元.
3.(2022•临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:
如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距离x(m)具备二次函数关系,其解析式为y=﹣x2+bx+c.
(1)求b,c的值;
(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.
①求x关于t的函数解析式;
②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?
【解答】解:(1)作BE⊥y轴于点E,
∵OA=65m,着陆坡AC的坡角为30°,AB=100m,
∴点A的坐标为(0,65),AE=50m,BE=50m,
∴OE=OA﹣AE=65﹣50=15(m),
∴点B的坐标为(50,15),
∵点A(0,65),点B(50,15)在二次函数y=﹣x2+bx+c的图象上,
∴,
解得,
即b的值是,c的值是65;
(2)①设x关于t的函数解析式是x=kt+m,
因为点(0,0),(5,50)在该函数图象上,
∴,
解得,
即x关于t的函数解析式是x=10t;
②设直线AB的解析式为y=px+q,
∵点A(0,65),点B(50,15)在该直线上,
∴,
解得,
即直线AB的解析式为y=﹣x+65,
则h=(﹣x2+x+65)﹣(﹣x+65)=﹣x2+x,
∴当x=﹣=25时,h取得最值,此时h=,
∵25<50,
∴x=25时,h取得最值,符合题意,
将x=25代入x=10t,得:25=10t,
解得t=2.5,
即当t为2.5时,运动员离着陆坡的竖直距离h最大,最大值是m.
4.(2022•威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.
【解答】解:设矩形鸡场与墙垂直的一边长为xm,则与墙平行的一边长为(47﹣2x+1)m,由题意可得:
y=x(47﹣2x+1),
即y=﹣2(x﹣12)2+288,
∵﹣2<0,
∴当x=12时,y有最大值为288,
当x=12时,47﹣x﹣(x﹣1)=24<25(符合题意),
∴鸡场的最大面积为288m2.
5.(2021•德州)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的成本y(万元)与产品数量x(件)之间具有函数关系y=x2+20x+100,B城生产产品的每件成本为60万元.
(1)当A城生产多少件产品时,A,B两城生产这批产品成本的和最小,最小值是多少?
(2)从A城把该产品运往C,D两地的费用分别为1万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(1)的条件下,怎样调运可使A,B两城运费的和最小?
【解答】解:(1)设A,B两城生产这批产品的总成本的和为W(万元),
则W=x2+20x+100+60(100﹣x)
=x2﹣40x+6100
=(x﹣20)2+5700,
∴当x=20时,W取得最小值,最小值为5700万元,
∴A城生产20件,A,B两城生产这批产品成本的和最小,最小值是5700万元;
(2)设从A城把该产品运往C地的产品数量为n件,则从A城把该产品运往D地的产品数量为(20﹣n)件;
从B城把该产品运往C地的产品数量为(90﹣n)件,则从B城把该产品运往D地的产品数量为(10﹣20+n)件,运费的和为P(万元),
由题意得:,
解得10≤n≤20,
P=n+3(20﹣n)+(90﹣n)+2(10﹣20+n)
=n+60﹣3n+90﹣n+2n﹣20
=n﹣2n+130
=﹣n+130,
根据一次函数的性质可得:
P随n的增大而减小,
∴当n=20时,P取得最小值,最小值为110,
∴从A城把该产品运往C地的产品数量为20件,则从A城把该产品运往D地的产品数量为0件;
从B城把该产品运往C地的产品数量为70件,则从B城把该产品运往D地的产品数量为10件时,可使A,B两城运费的和最小.
6.(2021•济宁)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
【解答】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x﹣5)元,
根据题意得:+=100,
整理得:x2﹣18x+45=0,
解得:x=15或x=3(舍去),
经检验,x=15是原分式方程的解,符合实际,
∴x﹣5=15﹣5=10(元),
答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;
(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,
由题意得:w=(15﹣a)(100+20a)=﹣20a2+200a+1500=﹣20(a﹣5)2+2000,
∵﹣20<0,
∴当a=5时,函数有最大值,最大值是2000元,
答:当降价5元时,该商场利润最大,最大利润是2000元.
7.(2021•临沂)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.
(1)当甲车减速至9m/s时,它行驶的路程是多少?
(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?
【解答】解:(1)由图可知:二次函数图象经过原点,
设二次函数表达式为s=at2+bt,一次函数表达式为v=kt+c,
∵一次函数经过(0,16),(8,8),
则,解得:,
∴一次函数表达式为v=﹣t+16,
令v=9,则t=7,
∴当t=7时,速度为9m/s,
∵二次函数经过(2,30),(4,56),
则,解得:,
∴二次函数表达式为,
令t=7,则s==87.5,
∴当甲车减速至9m/s时,它行驶的路程是87.5m;
(2)设t秒后相距w,则w=20+10t﹣(﹣t2+16t)=(t﹣6)2+2,
∵>0,
∴t=6时,w有最小值,最小值为2,
∴6秒时两车相距最近,最近距离是2米.
8.(2020•潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求y与x之间的函数表达式;
(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)
【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,
将点(60,100)、(70,80)代入一次函数表达式得:,
解得:,
故函数的表达式为:y=﹣2x+220;
(2)设药店每天获得的利润为w元,由题意得:
w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,
∵﹣2<0,函数有最大值,
∴当x=80时,w有最大值,此时最大值是1800,
故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.
9.(2020•日照)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).
(1)若四块矩形花圃的面积相等,求证:AE=3BE;
(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.
【解答】解:(1)证明:∵矩形MEFN与矩形EBCF面积相等,
∴ME=BE,AM=GH.
∵四块矩形花圃的面积相等,即S矩形AMND=2S矩形MEFN,
∴AM=2ME,
∴AE=3BE;
(2)∵篱笆总长为100m,
∴2AB+GH+3BC=100,
即,
∴.
设BC的长度为xm,矩形区域ABCD的面积为ym2,
则,
∵,
∴BE=10﹣x>0,
解得x<,
∴(0<x<).
10.(2020•青岛)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.
(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;
(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)
(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?
【解答】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.
∴OH=AB=3,
∴EO=EH﹣OH=4﹣3=1,
∴E(0,1),D(2,0),
∴该抛物线的函数表达式为:y=kx2+1,
把点D(2,0)代入,得k=﹣,
∴该抛物线的函数表达式为:y=﹣x2+1;
(2)∵GM=2,
∴OM=OG=1,
∴当x=1时,y=,
∴N(1,),
∴MN=,
∴S矩形MNFG=MN•GM=×2=,
∴每个B型活动板房的成本是:
425+×50=500(元).
答:每个B型活动板房的成本是500元;
(3)根据题意,得
w=(n﹣500)[100+]
=﹣2(n﹣600)2+20000,
∵每月最多能生产160个B型活动板房,
∴100+≤160,
解得n≥620,
∵﹣2<0,
∴n≥620时,w随n的增大而减小,
∴当n=620时,w有最大值为19200元.
答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.
三.二次函数综合题(共6小题)
11.(2022•潍坊)为落实“双减”,老师布置了一项这样的课后作业:
二次函数的图象经过点(﹣1,﹣1),且不经过第一象限,写出满足这些条件的一个函数表达式.
【观察发现】
请完成作业,并在直角坐标系中画出大致图象.
【思考交流】
小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”
小莹说:“满足条件的函数图象一定在x轴的下方.”
你认同他们的说法吗?若不认同,请举例说明.
【概括表达】
小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数y=ax2+bx+c的图象与系数a,b,c的关系,得出了提高老师作业批阅效率的方法.
请你探究这个方法,写出探究过程.
【解答】解:y=﹣x2(答案不唯一);
【观察发现】
如图:
【思考交流】
我不认同他们的说法,理由如下:
∵抛物线的对称轴为x=﹣,a<0,
∴抛物线的对称轴可以在y轴的左侧,也可以在y轴的右侧,或者是y轴,
例如:y=﹣x2;
∴小亮的说法不正确;
∵抛物线y=﹣x2经过x轴,
∴小莹的说法不正确;
【概括表达】
设抛物线的解析式为y=ax2+bx+c,
∵经过点(﹣1,﹣1),
∴a﹣b+c=﹣1且a<0,
①当对称轴在y轴右侧时,即b>0,此时顶点在x轴上或x轴下方,
∴Δ=b2﹣4ac≤0,即b2≤4ac,
∴ac≥0,
∵a<0,
∴c≤0,
∵2ac≤a2+c2,
∴4ac≤(a+c)2=(b﹣1)2,
∴b2≤(b﹣1)2,
解得b≤;
②当对称轴在y轴左侧或y轴上时,b≤0,只需保证与y轴交点在x轴上或x轴下方,
∴c≤0;
综上所述:a<0,b≤,c≤0,且a﹣b+c=﹣1.
12.(2021•德州)小刚在用描点法画抛物线C1:y=ax2+bx+c时,列出了下面的表格:
x
…
0
1
2
3
4
…
y
…
3
6
7
6
3
…
(1)请根据表格中的信息,写出抛物线C1的一条性质: 抛物线的顶点坐标为(2,7) ;
(2)求抛物线C1的解析式;
(3)将抛物线C1先向下平移3个单位长度,再向左平移4个单位长度,得到新的抛物线C2;
①若直线y=x+b与两抛物线C1,C2共有两个公共点,求b的取值范围;
②抛物线C2的顶点为A,与x轴交点为点B,C(点B在点C左侧),点P(不与点A重合)在第二象限内,且为C2上任意一点,过点P作PD⊥x轴,垂足为D,直线AP交y轴于点Q,连接AB,DQ.求证:AB∥DQ.
【解答】解:(1)∵表中的数据关于(2,7)对称,
∴该抛物线的顶点为(2,7).
故答案为:抛物线的顶点坐标为(2,7)(答案不唯一);
(2)由题意抛物线的解析式为y=ax2+bx+c,将表中的三对对应值代入得:
,
解得:.
∴抛物线C1的解析式为y=﹣x2+4x+3.
(3)①由(1)知:抛物线C1的解析式为y=﹣x2+4x+3,
∴将抛物线C1先向下平移3个单位长度,再向左平移4个单位长度,得到新的抛物线C2的顶点为(﹣2,4).
∴抛物线C2的解析式为y=﹣(x+2)2+4=﹣x2﹣4x.
由题意得:或,
∴﹣x2+4x+3=x+b或﹣x2﹣4x=x+b.
即2x2﹣7x+2b﹣6=0或x2+x+b=0.
∵当Δ=0时,方程有两个相等的实数根,
∴72﹣4×2×(2b﹣6)=0或()2﹣4×1×b=0.
解得:b=或b=.
∵直线y=x+b与两抛物线C1,C2共有两个公共点,
∴<b<.
②由题意画出图形如下:过点A作AE⊥x轴于点E,
∵抛物线C2的解析式为y=﹣x2﹣4x,
∴令y=0,则﹣x2﹣4x=0,
解得:x=0或x=﹣4.
∵抛物线C2与x轴交点为点B,C(点B在点C左侧),
∴B(﹣4,0),C(0,0).
∴OB=4.
由①知:抛物线C2的顶点为A(﹣2,4).
∴AE=4,OE=2,
∴BE=OB﹣OE=2.
在Rt△ABE中,tan∠ABE==2.
∵点P(不与点A重合)在第二象限内,且为C2上任意一点,
∴设点P(m,﹣m2﹣4m),则m<0,﹣m2﹣4m>0.
∵PD⊥x轴,
∴OD=﹣m.
设直线AP的解析式为y=kx+n,则:
,
解得:.
∴直线AP的解析式为y=﹣(m+2)x﹣2m.
令x=0,则y=﹣2m.
∴Q(0,﹣2m).
∴OQ=﹣2m.
在Rt△ODQ中,tan∠QDO===2.
∴tan∠ABE=tan∠QDO.
∴∠ABE=∠QDO.
∴AB∥DQ.
13.(2021•泰安)二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点,连接BP、AC,交于点Q,过点P作PD⊥x轴于点D.
(1)求二次函数的表达式;
(2)连接BC,当∠DPB=2∠BCO时,求直线BP的表达式;
(3)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由.
【解答】解:(1)∵二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),
∴,
解得:,
∴该二次函数的表达式为y=﹣x2﹣3x+4;
(2)如图,设BP与y轴交于点E,
∵PD∥y轴,
∴∠DPB=∠OEB,
∵∠DPB=2∠BCO,
∴∠OEB=2∠BCO,
∴∠ECB=∠EBC,
∴BE=CE,
令x=0,得y=4,
∴C(0,4),OC=4,
设OE=a,则CE=4﹣a,
∴BE=4﹣a,
在Rt△BOE中,由勾股定理得:BE2=OE2+OB2,
∴(4﹣a)2=a2+12,
解得:a=,
∴E(0,),
设BE所在直线表达式为y=kx+e(k≠0),
∴,
解得:,
∴直线BP的表达式为y=﹣x+;
(3)有最大值.
如图,设PD与AC交于点N,
过点B作y轴的平行线与AC相交于点M,
设直线AC表达式为y=mx+n,
∵A(﹣4,0),C(0,4),
∴,
解得:,
∴直线AC表达式为y=x+4,
∴M点的坐标为(1,5),
∴BM=5,
∵BM∥PN,
∴△PNQ∽△BMQ,
∴==,
设P(a0,﹣a02﹣3a0+4)(﹣4<a0<0),则N(a0,a0+4),
∴===,
∴当a0=﹣2时,有最大值,
此时,点P的坐标为(﹣2,6).
14.(2020•济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.
(1)求抛物线的解析式及C点坐标;
(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;
(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.
【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,
故抛物线的表达式为y=﹣x2+2x+3,
当x=0时,y=3,故点C(0,3);
(2)当m=1时,点E(1,0),设点D的坐标为(1,a),
由点A、C、D的坐标得,AC==,同理可得:AD=,CD=,
①当CD=AD时,即=,解得a=1;
②当AC=AD时,同理可得a=(舍去负值);
故点D的坐标为(1,1)或(1,);
(3)∵E(m,0),则设点M(m,﹣m2+2m+3),
设直线BM的表达式为y=sx+t,则,解得,
故直线BM的表达式为y=(﹣m﹣1)x+3m+3,
当x=0时,y=3m+3,故点N(0,3m+3),则ON=3m+3;
S1=AE×yM=×(m+1)×(﹣m2+2m+3),
2S2=ON•xM=(3m+3)×m=S1=×(m+1)×(﹣m2+2m+3),
解得m=﹣2±或﹣1(舍去负值),
故m=﹣2.
15.(2020•烟台)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
(1)求抛物线的表达式;
(2)当线段DF的长度最大时,求D点的坐标;
(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
【解答】解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),
则x==(2t﹣t),解得:t=1,
故点A、B的坐标分别为(2,0)、(﹣1,0),
则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,
解得:a=﹣1,b=1,
故抛物线的表达式为:y=﹣x2+x+2;
(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),
由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,
设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),
则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,
∵﹣1<0,故DF有最大值,DF最大时m=1,
∴点D(1,2);
(3)存在,理由:
点D(m,﹣m2+m+2)(m>0),则OE=m,DE=﹣m2+m+2,
以点O,D,E为顶点的三角形与△BOC相似,
则,即=或2,即=或2,
解得:m=1或﹣2(舍去)或或(舍去),
经检验m=1或是方程的解,
故m=1或.
16.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:y=﹣x2+x+4;
(2)由抛物线的表达式知,点C(0,4),
由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;
设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),
∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,
∵OB=OC,故∠ABC=∠OCB=45°,
∴∠PQN=∠BQM=45°,
∴PN=PQsin45°=(﹣m2+m)=﹣(m﹣2)2+,
∵﹣<0,故当m=2时,PN有最大值为;
(3)存在,理由:
点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,
①当AC=CQ时,过点Q作QE⊥y轴于点E,连接AQ,
则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,
解得:m=±(舍去负值),
故点Q(,);
②当AC=AQ时,则AQ=AC=5,
在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),
故点Q(1,3);
③当CQ=AQ时,则2m2=[m﹣(﹣3)]2+(﹣m+4)2,解得:m=(舍去);
综上,点Q的坐标为(1,3)或(,).
相关试卷
这是一份第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共47页。试卷主要包含了x﹣1与x轴有公共点,探索发现,两点,与y轴交于点C,连接BC,,连接AC,BC等内容,欢迎下载使用。
这是一份第5章二次函数解答题-中档题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共27页。试卷主要包含了图象的顶点在y轴右侧,三点,对称轴是直线x=1等内容,欢迎下载使用。
这是一份第5章圆(解答题中档题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共23页。试卷主要包含了已知等内容,欢迎下载使用。