所属成套资源:[中考真题】各版本各地区九年级数学上学期期末复习培优练习
第3章圆的基本性质-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江)
展开
这是一份第3章圆的基本性质-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江),共22页。
第3章圆的基本性质-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江)
一.选择题(共14小题)
1.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为( )
A.(840+6π)m2 B.(840+9π)m2 C.840m2 D.876m2
2.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为( )
A.55° B.65° C.75° D.130°
3.(2022•杭州)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )
A.cosθ(1+cosθ) B.cosθ(1+sinθ)
C.sinθ(1+sinθ) D.sinθ(1+cosθ)
4.(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是( )
A.M1 B.M2 C.M3 D.M4
5.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为( )
A.95° B.100° C.105° D.130°
6.(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是( )
A.m B.m C.m D.(+2)m
7.(2021•衢州)如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B=∠β.当AC平分∠B′AC′时,∠α与∠β满足的数量关系是( )
A.∠α=2∠β B.2∠α=3∠β
C.4∠α+∠β=180° D.3∠α+2∠β=180°
8.(2021•衢州)已知扇形的半径为6,圆心角为150°,则它的面积是( )
A.π B.3π C.5π D.15π
9.(2021•绍兴)如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为( )
A.30° B.45° C.60° D.90°
10.(2021•湖州)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是( )
A.π B.π+ C. D.2π
11.(2021•湖州)如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是( )
A.60° B.70° C.80° D.90°
12.(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为( )
A.45° B.60° C.75° D.90°
13.(2020•杭州)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则( )
A.3α+β=180° B.2α+β=180° C.3α﹣β=90° D.2α﹣β=90°
14.(2020•湖州)如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是( )
A.70° B.110° C.130° D.140°
二.填空题(共8小题)
15.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是 .
16.(2022•温州)若扇形的圆心角为120°,半径为,则它的弧长为 .
17.(2021•台州)如图,将线段AB绕点A顺时针旋转30°,得到线段AC.若AB=12,则点B经过的路径长度为 .(结果保留π)
18.(2021•温州)若扇形的圆心角为30°,半径为17,则扇形的弧长为 .
19.(2020•浙江)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.
(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是 cm.
(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为 cm.
20.(2020•宁波)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为 cm(结果保留π).
21.(2020•温州)若扇形的圆心角为45°,半径为3,则该扇形的弧长为 .
22.(2020•湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是 .
三.解答题(共3小题)
23.(2022•衢州)如图,C,D是以AB为直径的半圆上的两点,∠CAB=∠DBA,连结BC,CD.
(1)求证:CD∥AB.
(2)若AB=4,∠ACD=30°,求阴影部分的面积.
24.(2021•丽水)如图,在5×5的方格纸中,线段AB的端点均在格点上,请按要求画图.
(1)如图1,画出一条线段AC,使AC=AB,C在格点上;
(2)如图2,画出一条线段EF,使EF,AB互相平分,E,F均在格点上;
(3)如图3,以A,B为顶点画出一个四边形,使其是中心对称图形,且顶点均在格点上.
25.(2020•湖州)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD,BC平分∠ABD.
(1)求证:∠CAD=∠ABC;
(2)若AD=6,求的长.
第3章圆的基本性质-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江)
参考答案与试题解析
一.选择题(共14小题)
1.(2022•台州)一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为( )
A.(840+6π)m2 B.(840+9π)m2 C.840m2 D.876m2
【解答】解:如图,
该垃圾填埋场外围受污染土地的面积=80×3×2+60×3×2+32π
=(840+9π)m2.
故选:B.
2.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为( )
A.55° B.65° C.75° D.130°
【解答】解:∵∠BOC=130°,点A在上,
∴∠BAC=∠BOC==65°,
故选:B.
3.(2022•杭州)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )
A.cosθ(1+cosθ) B.cosθ(1+sinθ)
C.sinθ(1+sinθ) D.sinθ(1+cosθ)
【解答】解:当△ABC的高AD经过圆的圆心时,此时△ABC的面积最大,
如图所示,
∵A′D⊥BC,
∴BC=2BD,∠BOD=∠BA′C=θ,
在Rt△BOD中,
sinθ=,cosθ=
∴BD=sinθ,OD=cosθ,
∴BC=2BD=2sinθ,
A′D=A′O+OD=1+cosθ,
∴A′D•BC=×2sinθ(1+cosθ)=sinθ(1+cosθ).
故选:D.
4.(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是( )
A.M1 B.M2 C.M3 D.M4
【解答】解:∵点A(4,2),点P(0,2),
∴PA⊥y轴,PA=4,
由旋转得:∠APB=60°,AP=PB=4,
如图,过点B作BC⊥y轴于C,
∴∠BPC=30°,
∴BC=2,PC=2,
∴B(2,2+2),
设直线PB的解析式为:y=kx+b,
则,
∴,
∴直线PB的解析式为:y=x+2,
当y=0时,x+2=0,x=﹣,
∴点M1(﹣,0)不在直线PB上,
当x=﹣时,y=﹣3+2=﹣1,
∴M2(﹣,﹣1)在直线PB上,
当x=1时,y=+2,
∴M3(1,4)不在直线PB上,
当x=2时,y=2+2,
∴M4(2,)不在直线PB上.
故选:B.
5.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为( )
A.95° B.100° C.105° D.130°
【解答】解:∵OD⊥AB,OE⊥AC,
∴∠ADO=90°,∠AEO=90°,
∵∠DOE=130°,
∴∠BAC=360°﹣90°﹣90°﹣130°=50°,
∴∠BOC=2∠BAC=100°,
故选:B.
6.(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是( )
A.m B.m C.m D.(+2)m
【解答】解:连接AC,BD,AC和BD相交于点O,则O为圆心,如图所示,
由题意可得,CD=2m,AD=2m,∠ADC=90°,
∴tan∠DCA===,AC==4(m),
∴∠ACD=60°,OA=OC=2m,
∴∠ACB=30°,
∴∠AOB=60°,
∴优弧ADCB所对的圆心角为300°,
∴改建后门洞的圆弧长是:=(m),
故选:C.
7.(2021•衢州)如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B=∠β.当AC平分∠B′AC′时,∠α与∠β满足的数量关系是( )
A.∠α=2∠β B.2∠α=3∠β
C.4∠α+∠β=180° D.3∠α+2∠β=180°
【解答】解:∵AC平分∠B′AC′,
∴∠B'AC=∠C'AC,
∵菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,
∴∠BAB'=∠CAC'=∠α,
∵AC平分∠BAD,
∴∠BAC=∠DAC,
∴∠BAB'=∠DAC',
∴∠BAB'=∠B'AC=∠CAC'=∠DAC'=∠α,
∵AD∥BC,
∴∠B+∠BAD=180°,
∴4∠α+∠β=180°,
故选:C.
8.(2021•衢州)已知扇形的半径为6,圆心角为150°,则它的面积是( )
A.π B.3π C.5π D.15π
【解答】解:扇形面积=,
故选:D.
9.(2021•绍兴)如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为( )
A.30° B.45° C.60° D.90°
【解答】解:连接OB、OC,如图,
∵正方形ABCD内接于⊙O,
∴所对的圆心角为90°,
∴∠BOC=90°,
∴∠BPC=∠BOC=45°.
故选:B.
10.(2021•湖州)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是( )
A.π B.π+ C. D.2π
【解答】解:如图,当P与A重合时,点C关于BP的对称点为C′,
当P与D重合时,点C关于BP的对称点为C″,
∴点P从点A运动到点D,则线段CC1扫过的区域为:扇形BC'C''和△BCC'',
在△BCD中,∵∠BCD=90°,BC=,CD=1,
∴tan∠DBC=,
∴∠DBC=30°,
∴∠CBC″=60°,
∵BC=BC'',
∴△BCC''为等边三角形,
∴S扇形BC′C″==π,
作C''F⊥BC于F,
∵△BCC''为等边三角形,
∴BF=,
∴C''F=tan60°×=,
∴S△BCC''=,
∴线段CC1扫过的区域的面积为:π+.
故选:B.
11.(2021•湖州)如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是( )
A.60° B.70° C.80° D.90°
【解答】解:∵点O为△ABC的外心,∠A=40°,
∴∠A=∠BOC,
∴∠BOC=2∠A=80°,
故选:C.
12.(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为( )
A.45° B.60° C.75° D.90°
【解答】解:连接BE,
∵∠BEC=∠BAC=15°,∠CED=30°,
∴∠BED=∠BEC+∠CED=45°,
∴∠BOD=2∠BED=90°.
故选:D.
13.(2020•杭州)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则( )
A.3α+β=180° B.2α+β=180° C.3α﹣β=90° D.2α﹣β=90°
【解答】解:∵OA⊥BC,
∴∠AOB=∠AOC=90°,
∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,
∴∠COD=2∠DBC=180°﹣2α,
∵∠AOD+∠COD=90°,
∴β+180°﹣2α=90°,
∴2α﹣β=90°,
故选:D.
14.(2020•湖州)如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是( )
A.70° B.110° C.130° D.140°
【解答】解:∵四边形ABCD内接于⊙O,∠ABC=70°,
∴∠ADC=180°﹣∠ABC=180°﹣70°=110°,
故选:B.
二.填空题(共8小题)
15.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是 30° .
【解答】解:∵OC⊥AB,
∴,
∴∠AOD=∠BOD,
∵∠AOB=120°,
∴∠AOD=∠BOD=∠AOB=60°,
∴∠APD=∠AOD=×60°=30°,
故答案为:30°.
16.(2022•温州)若扇形的圆心角为120°,半径为,则它的弧长为 π .
【解答】解:∵扇形的圆心角为120°,半径为,
∴它的弧长为:=π,
故答案为:π.
17.(2021•台州)如图,将线段AB绕点A顺时针旋转30°,得到线段AC.若AB=12,则点B经过的路径长度为 2π .(结果保留π)
【解答】解:长度==2π,
故答案为:2π.
18.(2021•温州)若扇形的圆心角为30°,半径为17,则扇形的弧长为 π .
【解答】解:根据弧长公式可得:
l===π.
故答案为:π.
19.(2020•浙江)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.
(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是 16 cm.
(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为 cm.
【解答】解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,
∵OE=OF=1cm,
∴EF=2cm,
∴AB=CD=2cm,
∴此时四边形ABCD的周长为2+2+6+6=16(cm),
故答案为16.
(2)如图3中,连接EF交OC于H.
由题意CE=CF=×6=(cm),
∵OE=OF=1cm,
∴CO垂直平分线段EF,
∵OC===(cm),
∵•OE•EC=•CO•EH,
∴EH==(cm),
∴EF=2EH=(cm)
∵EF∥AB,
∴==,
∴AB=×=(cm).
故答案为.
20.(2020•宁波)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为 18π cm(结果保留π).
【解答】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,
∴的长==18π(cm),
故答案为:18π.
21.(2020•温州)若扇形的圆心角为45°,半径为3,则该扇形的弧长为 π .
【解答】解:根据弧长公式:l==π,
故答案为:π.
22.(2020•湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是 3 .
【解答】解:过点O作OH⊥CD于H,连接OC,如图,则CH=DH=CD=4,
在Rt△OCH中,OH==3,
所以CD与AB之间的距离是3.
故答案为3.
三.解答题(共3小题)
23.(2022•衢州)如图,C,D是以AB为直径的半圆上的两点,∠CAB=∠DBA,连结BC,CD.
(1)求证:CD∥AB.
(2)若AB=4,∠ACD=30°,求阴影部分的面积.
【解答】(1)证明:∵=,
∴∠ACD=∠DBA,
又∵∠CAB=∠DBA,
∴∠CAB=∠ACD,
∴CD∥AB.
(2)如图,连结OD,过点D作DE⊥AB,垂足为E.
∵∠ACD=30°,
∴∠ACD=∠CAB=30°,
∴∠AOD=∠COB=60°,
∴∠COD=180°﹣∠AOD﹣∠COB=60°,
∴∠BOD=180°﹣∠AOD=120°,
∴S扇形BOD=.
在Rt△ODE中,
∵DE=cos30°OD==,
∴S△BOD===,
∴S阴影=S扇形BOD﹣S△BOD,=.
∴S阴影=.
24.(2021•丽水)如图,在5×5的方格纸中,线段AB的端点均在格点上,请按要求画图.
(1)如图1,画出一条线段AC,使AC=AB,C在格点上;
(2)如图2,画出一条线段EF,使EF,AB互相平分,E,F均在格点上;
(3)如图3,以A,B为顶点画出一个四边形,使其是中心对称图形,且顶点均在格点上.
【解答】解:如图:(1)线段AC即为所作,
(2)线段EF即为所作,
(3)四边形ABHG即为所作.
25.(2020•湖州)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD,BC平分∠ABD.
(1)求证:∠CAD=∠ABC;
(2)若AD=6,求的长.
【解答】解:(1)∵BC平分∠ABD,
∴∠DBC=∠ABC,
∵∠CAD=∠DBC,
∴∠CAD=∠ABC;
(2)∵∠CAD=∠ABC,
∴=,
∵AD是⊙O的直径,AD=6,
∴的长=××π×6=π.
相关试卷
这是一份第4章相似三角形-【浙教版-中考真题】九年级数学上学期期末复习培优练习(浙江),共23页。
这是一份第3章+投影与三视图选择题-【浙教版-中考真题】九年级数学下册期末复习培优练习(浙江),共18页。
这是一份第2章直线与圆的位置关系-【浙教版-中考真题】九年级数学下册期末复习培优练习(浙江),共17页。