所属成套资源:2022-2023学年北师大九年级数学上册《 考点解读》专题训练
- 专题2.2 解一元二次方程-直接开平方(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.3 解一元二次方程-公式法(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.3 解一元二次方程-公式法(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.3 解一元二次方程-公式法(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.4 解一元二次方程-因式分解法(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
专题2.2+解一元二次方程-配方法(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版)
展开
这是一份专题2.2+解一元二次方程-配方法(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版),文件包含专题22解一元二次方程-配方法能力提升解析版docx、专题22解一元二次方程-配方法能力提升原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
1.(2021秋•扶风县期末)方程x2=4的根为( )
A.x=2B.x=﹣2C.x=0D.x=±2
2.(2022春•泉港区期末)用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是( )
A.(x﹣4)2=19B.(x+4)2=19C.(x+2)2=7D.(x﹣2)2=7
3.(2022•宁波模拟)一元二次方程x2﹣2x﹣m=0,用配方法解该方程,配方后的方程为( )
A.(x﹣1)2=m2+1B.(x﹣1)2=m﹣1
C.(x﹣1)2=1﹣mD.(x﹣1)2=m+1
4.(2021春•河北区期末)如果2是方程x2﹣m=0的一个根,则m的值为( )
A.2B.C.3D.4
5.(2021秋•海门市期末)用配方法解一元二次方程x2﹣8x+1=0时,下列变形正确的为( )
A.(x﹣4)2=17B.(x+4)2=17C.(x﹣4)2=15D.(x+4)2=15
6.(2022春•平阴县期末)一元二次方程x2﹣8x﹣1=0配方后可变形为( )
A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15
7.(2021秋•曾都区期中)用直接开平方的方法解方程(3x+1)2=(2x﹣5)2,做法正确的是( )
A.3x+1=2x﹣5B.3x+1=﹣(2x﹣5)
C.3x+1=±(2x﹣5)D.3x+1=±2x﹣5
8.(2021春•浦江县期末)用配方法解方程:2x2+4x﹣3=0,则配方结果正确的是( )
A.(x+1)2=B.(x﹣1)2=C.(x+1)2=D.(x﹣1)2=
9.(2021•深圳模拟)若x1,x2是方程x2=16的两根,则x1+x2的值是( )
A.16B.8C.4D.0
10.(2022春•东乡区期中)无论a,b为何值代数式a2+b2+6b+11﹣2a的值总是( )
A.非负数B.0C.正数D.负数
二、填空题。
11.(2021春•通州区期末)如果一元二次方程x2﹣9=0的两根分别是a,b,且a>b,那么a的值是 .
12.(2021春•宁阳县期末)方程x2﹣2x﹣5=0配方后可化为 .
13.(2022春•雨城区校级月考)多项式5x2﹣4xy+4y2+12x+25的最小值为 .
14.(2021春•包河区期末)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+1)*3=0的解为 .
15.(2021春•莱州市期末)若(x2+y2﹣1)2=4,则x2+y2= .
16.(2021秋•瓦房店市月考)用配方法解一元二次方程2x2+3x+1=0,变形为(x+h)2=k,则h= ,k= .
17.(2021秋•娄星区校级月考)已知4x2﹣ax+1可变为(2x﹣b)2的形式,则ab= .
18.(2022•十堰模拟)对于实数p、q,我们用符号min{p,q}表示p、q两数中较小的数,如min{1,2}=1,若min{(x﹣1)2,x2}=1,则x= .
三、解答题。
19.(2021•天河区二模)解方程:(x﹣1)2﹣16=0.
20.(2021秋•台江区校级期末)解方程:x2﹣2x﹣5=0.
21.(2021•饶平县校级模拟)用配方法解方程:x2﹣8x+1=0.
22.(2021春•余姚市期末)解方程:
(1)(2x﹣1)2=16; (2)2x2+8x﹣1=0.
23.(2021秋•内乡县期末)仔细阅读下面例题,解答问题.
【例题】已知:m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,
∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,
∴(m﹣n)2+(n﹣4)2=0,
∴m﹣n=0,n﹣4=0,
∴m=4,n=4.
∴m的值为4,n的值为4.
【问题】仿照以上方法解答下面问题:
(1)已知x2+2xy+2y2﹣6y+9=0,求x、y的值.
(2)在Rt△ABC中,∠C=90°,三边长a、b、c都是正整数,且满足a2+b2﹣12a﹣16b+100=0,求斜边长c的值.
24.(2021春•南山区校级期中)把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.
例如:若代数式M=a2﹣2ab+2b2﹣2b+2,利用配方法求M的最小值:a2﹣2ab+2b2﹣2b+2=a2﹣2ab+b2+b2﹣2b+1+1=(a﹣b)2+(b﹣1)2+1.
∵(a﹣b)2≥0,(b﹣1)2≥0,
∴当a=b=1时,代数式M有最小值1.
请根据上述材料解决下列问题:
(1)在横线上添上一个常数项使之成为完全平方式:a2+4a+ ;
(2)若代数式M=+2a+1,求M的最小值;
(3)已知a2+2b2+4c2﹣2ab﹣2b﹣4c+2=0,求代数式a+b+c的值.
25.(2020•河北)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.例如:第一次按键后,A,B两区分别显示:
(1)从初始状态按2次后,分别求A,B两区显示的结果;
(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.
26.(2022春•龙文区校级期中)先阅读理解下面的例题,再按要求解答下列问题:
例题:求代数式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴代数式y2+4y+8的最小值为4.
(1)求代数式x2﹣2x﹣2的最小值;
(2)若a2﹣6a+9+|b+1|=0,则ab= .
(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?
27.(2022春•江阴市期中)把代数式通过配方等手段得到完全平方式,再运用完全平方式的非负性这一性质解决问题,这种解题方法叫做配方法.配方法在代数式求值,解方程,最值问题等都有广泛的应用.如利用配方法求最小值,求a2+6a+8的最小值.
解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1,因为不论a取何值,(a+3)2总是非负数,即(a+3)2≥0.所以(a+3)2﹣1≥﹣1,所以当a=﹣3时,a2+6a+8有最小值,最小值是﹣1.
根据上述材料,解答下列问题:
(1)填空:x2﹣10x+ =(x﹣ )2;
(2)将x2﹣8x+2变形为(x+m)2+n的形式,并求出x2﹣8x+2的最小值;
(3)若M=4a2+9a+3,N=3a2+11a﹣1,其中a为任意数,试比较M与N的大小,并说明理由.
28.(2022春•滨海县期中)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,
∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
(m﹣n)2+(n﹣4)2=0,
∴(m﹣n)2=0且(n﹣4)2=0,
∴m=n=4.
根据你的观察,探究下面的问题:
(1)a2﹣2a+1+b2=0,则a= ,b= ;
(2)已知x2+2y2﹣2xy+4y+4=0,求xy的值;
(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣10b+27=0,求△ABC的周长.
29.(2022春•湖口县期中)配方法是数学中非常重要的一种思想方法,它是指将一个式子或将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,并结合非负数的意义来解决问题.
定义:若一个整数能表示成a2+b2(a,b为整数)的形式,则称这个数为“完美数”.
例如,5是“完美数”,理由:因为5=12+22,所以5是“完美数”.
解决问题:
(1)已知29是“完美数”,请将它写成a2+b2(a,b为整数)的形式;
(2)若x2﹣4x+5可配方成(x﹣m)2+n(m,n为常数),则mn= ;
(3)探究问题:已知x2+y2﹣2x+4y+5=0,求xy的值.
(4)已知S=x2+4y2+4x﹣12y+k(x,y是整数,k是常数),要使S为“完美数”,试求出k的值.
相关试卷
这是一份专题2.2 解一元二次方程-配方法(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版),共12页。试卷主要包含了用配方法解方程,解方程等内容,欢迎下载使用。
这是一份专题2.2 解一元二次方程-配方法(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版),共16页。
这是一份专题1.1 菱形的性质与判定(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版),文件包含专题11菱形的性质与判定能力提升解析版docx、专题11菱形的性质与判定能力提升原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。