![甘肃省嘉峪关市六中2022年中考数学适应性模拟试题含解析01](http://img-preview.51jiaoxi.com/2/3/13517063/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![甘肃省嘉峪关市六中2022年中考数学适应性模拟试题含解析02](http://img-preview.51jiaoxi.com/2/3/13517063/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![甘肃省嘉峪关市六中2022年中考数学适应性模拟试题含解析03](http://img-preview.51jiaoxi.com/2/3/13517063/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
甘肃省嘉峪关市六中2022年中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.﹣的绝对值是( )
A.﹣ B. C.﹣2 D.2
2.下面的几何体中,主视图为圆的是( )
A. B. C. D.
3.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:
弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;
其中正确说法的个数为( )
A.4 B.3 C.2 D.1
4.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )
A.12×10 B.1.2×10 C.1.2×10 D.0.12×10
5.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )
A.赚了10元 B.赔了10元 C.赚了50元 D.不赔不赚
6.的倒数是( )
A.﹣ B.2 C.﹣2 D.
7.下列运算正确的是( )
A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-3
8.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为( )
A.m> B.m C.m= D.m=
9.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是( )
A. B. C. D.
10.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为
A.12 B.9 C.6 D.4
二、填空题(共7小题,每小题3分,满分21分)
11.8的立方根为_______.
12.同一个圆的内接正方形和正三角形的边心距的比为_____.
13.在中,::1:2:3,于点D,若,则______
14.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_____.
15.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.
16.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.
17.从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ .
三、解答题(共7小题,满分69分)
18.(10分)解不等式组,并写出该不等式组的最大整数解.
19.(5分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
20.(8分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.
(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:
①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度.
21.(10分)解不等式组,并将解集在数轴上表示出来.
22.(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:
(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;
(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.
23.(12分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.
请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.
24.(14分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.
(1)求该抛物线的解析式;
(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;
(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据求绝对值的法则,直接计算即可解答.
【详解】
,
故选:B.
【点睛】
本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.
2、C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
B、的主视图是正方形,故B不符合题意;
C、的主视图是圆,故C符合题意;
D、的主视图是三角形,故D不符合题意;
故选C.
考点:简单几何体的三视图.
3、C
【解析】
根据基本作图的方法即可得到结论.
【详解】
解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;
(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;
(3)弧③是以A为圆心,大于AB的长为半径所画的弧,错误;
(4)弧④是以P为圆心,任意长为半径所画的弧,正确.
故选C.
【点睛】
此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.
4、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
数据12000用科学记数法表示为1.2×104,故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、A
【解析】
试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.
考点:一元一次方程的应用
6、B
【解析】
根据乘积是1的两个数叫做互为倒数解答.
【详解】
解:∵×1=1
∴的倒数是1.
故选B.
【点睛】
本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
7、D
【解析】
试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;
D、原式=﹣3,正确,故选D
考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.
8、C
【解析】
试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
∴△=32-4×2m=9-8m=0,
解得:m=.
故选C.
9、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到矩形的图形.
【详解】
A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;
C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.
故选C.
【点睛】
本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答.
10、B
【解析】
∵点,是中点
∴点坐标
∵在双曲线上,代入可得
∴
∵点在直角边上,而直线边与轴垂直
∴点的横坐标为-6
又∵点在双曲线
∴点坐标为
∴
从而,故选B
二、填空题(共7小题,每小题3分,满分21分)
11、2.
【解析】
根据立方根的定义可得8的立方根为2.
【点睛】
本题考查了立方根.
12、
【解析】
先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.
【详解】
设⊙O的半径为r,⊙O的内接正方形ABCD,如图,
过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,
∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,
∴O为正方形ABCD的中心,
∴∠BOC=90°,
∵OQ⊥BC,OB=CO,
∴QC=BQ,∠COQ=∠BOQ=45°,
∴OQ=OC×cos45°=R;
设⊙O的内接正△EFG,如图,
过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,
∵正△EFG是⊙O的外接圆,
∴∠OGF=∠EGF=30°,
∴OH=OG×sin30°=R,
∴OQ:OH=(R):(R)=:1,
故答案为:1.
【点睛】
本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.
13、2.1
【解析】
先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
【详解】
解:根据题意,设∠A、∠B、∠C为k、2k、3k,
则k+2k+3k=180°,
解得k=30°,
2k=60°,
3k=90°,
∵AB=10,
∴BC=AB=1,
∵CD⊥AB,
∴∠BCD=∠A=30°,
∴BD=BC=2.1.
故答案为2.1.
【点睛】
本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.
14、1
【解析】
试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=1.
15、或﹣.
【解析】
试题分析:当点F在OB上时,设EF交CD于点P,
可求点P的坐标为(,1).
则AF+AD+DP=3+x, CP+BC+BF=3﹣x,
由题意可得:3+x=2(3﹣x),
解得:x=.
由对称性可求当点F在OA上时,x=﹣,
故满足题意的x的值为或﹣.
故答案是或﹣.
【点睛】
考点:动点问题.
16、
【解析】
【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.
【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,
由题意得:x+(2x+1.82)=50,
故答案为x+(2x+1.82)=50.
【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.
17、144°
【解析】
根据多边形内角和公式计算即可.
【详解】
解:由题知,这是一个10边形,根据多边形内角和公式:
每个内角等于.
故答案为:144°.
【点睛】
此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.
三、解答题(共7小题,满分69分)
18、﹣2,﹣1,0
【解析】
分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.
本题解析:
,
解不等式①得,x≥−2,
解不等式②得,x<1,
∴不等式组的解集为−2≤x<1.
∴不等式组的最大整数解为x=0,
19、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.
【解析】
(1)证明:∵CF∥AB,
∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,
∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.
(2)四边形BDCF是矩形.
证明:由(1)知DB=CF,又DB∥CF,
∴四边形BDCF为平行四边形.
∵AC=BC,AD=DB,∴CD⊥AB.
∴四边形BDCF是矩形.
20、(1)证明见解析(2)①线段EC,CF与BC的数量关系为:CE+CF=BC.②CE+CF=BC(3)
【解析】
(1)利用包含60°角的菱形,证明△BAE≌△CAF,可求证;
(2)由特殊到一般,证明△CAE′∽△CGE,从而可以得到EC、CF与BC的数量关系
(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.
【详解】
解:(1)证明:∵四边形ABCD是菱形,∠BAD=120°,
∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,
∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF,
∴EC+CF=EC+BE=BC,
即EC+CF=BC;
(2)知识探究:
①线段EC,CF与BC的数量关系为:CE+CF=BC.
理由:如图乙,过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.
类比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE
,
,
同理可得:,
,
即;
②CE+CF=BC.
理由如下:
过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.
类比(1)可得:E′C+CF′=BC,
∵AE′∥EG,∴△CAE′∽△CAE,
∴,∴CE=CE′,
同理可得:CF=CF′,
∴CE+CF=CE′+CF′=(CE′+CF′)=BC,
即CE+CF=BC;
(3)连接BD与AC交于点H,如图所示:
在Rt△ABH中,
∵AB=8,∠BAC=60°,
∴BH=ABsin60°=8×=,
AH=CH=ABcos60°=8×=4,
∴GH===1,
∴CG=4-1=3,
∴,
∴t=(t>2),
由(2)②得:CE+CF=BC,
∴CE=BC -CF=×8-=.
【点睛】
本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形.
21、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.
【解析】
分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案
详解:解不等式①,得x>﹣4,
解不等式②,得x≤1,
把不等式①②的解集在数轴上表示如图
,
原不等式组的解集为﹣4<x≤1.
点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.
22、(1);(2).
【解析】
(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;
(2)画出树状图,然后根据概率公式列式计算即可得解.
【详解】
(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,
∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;
(2)根据题意画出树状图如下:
一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
所以,P(抽出的两张卡片的图形是中心对称图形).
【点睛】
本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
23、(1)36 , 40, 1;(2).
【解析】
(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.
(2)画出树状图,根据概率公式求解即可.
【详解】
(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;
该班共有学生(2+1+7+4+1+1)÷10%=40人;
训练后篮球定时定点投篮平均每个人的进球数是=1,
故答案为:36,40,1.
(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:
由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)
的结果有6种,
∴P(M)==.
24、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).
【解析】
分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,PD==1,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.
详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,
则点A(﹣2,0),B(0,2),
把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得.
∴该抛物线的解析式为y=﹣x2﹣x+2;
(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,
则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;
(3)如图,作PE⊥x轴于点E,交AB于点D,
在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,
在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,
设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,
即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).
点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.
2023-2024学年甘肃省嘉峪关市第六中学数学九上期末达标检测模拟试题含答案: 这是一份2023-2024学年甘肃省嘉峪关市第六中学数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了已知点 P1,方程的根是等内容,欢迎下载使用。
2023-2024学年甘肃省嘉峪关市第六中学数学八上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年甘肃省嘉峪关市第六中学数学八上期末质量跟踪监视模拟试题含答案,共6页。试卷主要包含了计算下列各式,结果为的是,下列计算正确的是等内容,欢迎下载使用。
甘肃省嘉峪关市六中达标名校2022年中考数学仿真试卷含解析: 这是一份甘肃省嘉峪关市六中达标名校2022年中考数学仿真试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。