|试卷下载
搜索
    上传资料 赚现金
    广东省韶关市名校2022年毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    广东省韶关市名校2022年毕业升学考试模拟卷数学卷含解析01
    广东省韶关市名校2022年毕业升学考试模拟卷数学卷含解析02
    广东省韶关市名校2022年毕业升学考试模拟卷数学卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省韶关市名校2022年毕业升学考试模拟卷数学卷含解析

    展开
    这是一份广东省韶关市名校2022年毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了若与 互为相反数,则x的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰(  )



    平均数
    8
    8
    方差
    1.2
    1.8

    A.甲 B.乙 C.丙 D.丁
    2.下列运算正确的是( )
    A.=x5 B. C.·= D.3+2
    3.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为(  )
    A.8×107 B.880×108 C.8.8×109 D.8.8×1010
    4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是(  )
    A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1
    C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1
    5.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:

    下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
    A.① B.② C.①③ D.②③
    6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是(  )

    A.15° B.22.5° C.30° D.45°
    7.若正多边形的一个内角是150°,则该正多边形的边数是( )
    A.6 B.12 C.16 D.18
    8.若与 互为相反数,则x的值是(  )
    A.1 B.2 C.3 D.4
    9.解分式方程 ,分以下四步,其中,错误的一步是(  )
    A.方程两边分式的最简公分母是(x﹣1)(x+1)
    B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
    C.解这个整式方程,得x=1
    D.原方程的解为x=1
    10.若一个凸多边形的内角和为720°,则这个多边形的边数为  
    A.4 B.5 C.6 D.7
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______ 人.

    12.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD高度是4m,从侧面C点测得警示牌顶端点A和底端B点的仰角(∠ACD和∠BCD)分别是60°,45°.那么路况警示牌AB的高度为_____.

    13.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.

    14.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.

    15.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②;③PD2=PH•CD;④,其中正确的是______(写出所有正确结论的序号).

    16.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.

    三、解答题(共8题,共72分)
    17.(8分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
    求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式的解集.
    18.(8分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.
    19.(8分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.
    方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;
    方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.
    (1)若顾客选择方式一,则享受优惠的概率为   ;
    (2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.

    20.(8分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,,

    21.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
    被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
    22.(10分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP=AD. 求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E,当的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ=BC.已知 AD=1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F,连接 CF,G 为 CF 的中点,M、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM=CN,MN 与 DF 相交于点 H,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.

    23.(12分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同
    (1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .
    (2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率
    24.某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    求出甲、乙的平均数、方差,再结合方差的意义即可判断.
    【详解】
    =(6+10+8+9+8+7+8+9+7+7)=8,
    = [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
    =×13
    =1.3;
    =(7+10+7+7+9+8+7+9+9+7)=8,
    = [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
    =×12
    =1.2;
    丙的平均数为8,方差为1.2,
    丁的平均数为8,方差为1.8,
    故4个人的平均数相同,方差丁最大.
    故应该淘汰丁.
    故选D.
    【点睛】
    本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
    2、B
    【解析】
    根据幂的运算法则及整式的加减运算即可判断.
    【详解】
    A. =x6,故错误;
    B. ,正确;
    C. ·=,故错误;
    D. 3+2 不能合并,故错误,
    故选B.
    【点睛】
    此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.
    3、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    880亿=880 0000 0000=8.8×1010,
    故选D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、B
    【解析】
    ∵函数y=-2x2的顶点为(0,0),
    ∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
    ∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
    故选B.
    【点睛】
    二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
    5、B
    【解析】
    根据图形和各个小题的说法可以判断是否正确,从而解答本题
    【详解】
    当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
    随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
    虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
    故选:B.
    【点睛】
    此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.
    6、A
    【解析】
    试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.

    考点:平行线的性质.
    7、B
    【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,
    故选B.
    8、D
    【解析】
    由题意得+=0,
    去分母3x+4(1-x)=0,
    解得x=4.故选D.
    9、D
    【解析】
    先去分母解方程,再检验即可得出.
    【详解】
    方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解
    【点睛】
    本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验
    10、C
    【解析】
    设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.
    【详解】
    设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.
    【点睛】
    本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、35
    【解析】
    分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.
    详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),
    则本次捐款20元的有:80−(20+10+15)=35(人),
    故答案为:35.
    点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.
    12、m
    【解析】
    由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.
    【详解】
    在Rt△ADC中,∠ACD=60°,AD=4
    ∴tan60°==
    ∴CD=
    ∵在Rt△BCD中,∠BAD=45∘,CD=
    ∴BD=CD=.
    ∴AB=AD-BD=4-=
    路况警示牌AB的高度为m.
    故答案为:m.
    【点睛】
    解直角三角形的应用-仰角俯角问题.
    13、3
    【解析】
    分析:
    由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:,解此方程即可求得△EFC的面积.
    详解:
    ∵在△ABC中,点E,F分别是AC,BC的中点,
    ∴EF是△ABC的中位线,
    ∴EF∥AB,EF:AB=1:2,
    ∴△CEF∽△CAB,
    ∴S△CEF:S△CAB=1:4,
    设S△CEF=x,
    ∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,
    ∴,
    解得:,
    经检验:是所列方程的解.
    故答案为:3.
    点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.
    14、1
    【解析】
    先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.
    【详解】
    解:∵EF⊥BD,∠AEO=120°,
    ∴∠EDO=30°,∠DEO=60°,
    ∵四边形ABCD是矩形,
    ∴∠OBF=∠OCF=30°,∠BFO=60°,
    ∴∠FOC=60°-30°=30°,
    ∴OF=CF,
    又∵Rt△BOF中,BO=BD=AC=,
    ∴OF=tan30°×BO=1,
    ∴CF=1,
    故答案为:1.
    【点睛】
    本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.
    15、①②③
    【解析】
    依据∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依据△DFP∽△BPH,可得,再根据BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH•CP,再根据CP=CD,即可得出PD2=PH•CD;根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积﹣△BCD的面积,即可得出.
    【详解】
    ∵PC=CD,∠PCD=30°,
    ∴∠PDC=75°,
    ∴∠FDP=15°,
    ∵∠DBA=45°,
    ∴∠PBD=15°,
    ∴∠FDP=∠PBD,
    ∵∠DFP=∠BPC=60°,
    ∴△DFP∽△BPH,故①正确;
    ∵∠DCF=90°﹣60°=30°,
    ∴tan∠DCF=,
    ∵△DFP∽△BPH,
    ∴,
    ∵BP=CP=CD,
    ∴,故②正确;
    ∵PC=DC,∠DCP=30°,
    ∴∠CDP=75°,
    又∵∠DHP=∠DCH+∠CDH=75°,
    ∴∠DHP=∠CDP,而∠DPH=∠CPD,
    ∴△DPH∽△CPD,
    ∴,即PD2=PH•CP,
    又∵CP=CD,
    ∴PD2=PH•CD,故③正确;
    如图,过P作PM⊥CD,PN⊥BC,
    设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,
    ∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
    ∴∠PCD=30°
    ∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,
    ∵S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD
    =×4×2+×2×4﹣×4×4
    =4+4﹣8
    =4﹣4,
    ∴,故④错误,
    故答案为:①②③.

    【点睛】
    本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.
    16、12
    【解析】
    连接AO,BO,CO,如图所示:

    ∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
    ∴∠AOB==60°,∠AOC==90°,
    ∴∠BOC=30°,
    ∴n==12,
    故答案为12.

    三、解答题(共8题,共72分)
    17、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
    【解析】
    (1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
    【详解】
    (1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
    ∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
    ∴b=,k=﹣6
    ∴一次函数解析式y=﹣,反比例函数解析式y=.
    (2)根据题意得: ,
    解得: ,
    ∴S△ABF=×4×(4+2)=12
    (3)由图象可得:x<﹣2或0<x<4
    【点睛】
    本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
    18、
    【解析】
    分析:化简绝对值、0次幂和负指数幂,代入30°角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可.
    详解:原式=+1﹣2×+=.
    点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键.
    19、(1);(2).
    【解析】
    (1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;
    (2)根据题意可以画出相应的树状图,从而可以求得相应的概率.
    【详解】
    解:(1)由题意可得,
    顾客选择方式一,则享受优惠的概率为:,
    故答案为:;
    (2)树状图如下图所示,

    则顾客享受折上折优惠的概率是:,
    即顾客享受折上折优惠的概率是.
    【点睛】
    本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.
    20、14.2米;
    【解析】
    Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.
    【详解】
    设米
    ∵∠C=45°
    在中,米,

     又米,
    在中
    Tan∠ADB= ,
    Tan60°=
    解得
    答,建筑物的高度为米.
    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.
    21、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.
    【解析】
    分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;
    (2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
    (3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
    详解:(1)被随机抽取的学生共有14÷28%=50(人);
    (2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,
    活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,
    如图所示:

    (3)参与了4项或5项活动的学生共有×2000=720(人).
    点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
    22、(1)证明见解析(2) (3)
    【解析】
    (1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;
    (2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;
    (3)GH=,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.
    【详解】
    (1)在图1中,设AD=BC=a,则有AB=CD=a,
    ∵四边形ABCD是矩形,
    ∴∠A=90°,
    ∵PA=AD=BC=a,
    ∴PD==a,
    ∵AB=a,
    ∴PD=AB;
    (2)如图,作点P关于BC的对称点P′,
    连接DP′交BC于点E,此时△PDE的周长最小,

    设AD=PA=BC=a,则有AB=CD=a,
    ∵BP=AB-PA,
    ∴BP′=BP=a-a,
    ∵BP′∥CD,
    ∴ ;
    (3)GH=,理由为:
    由(2)可知BF=BP=AB-AP,
    ∵AP=AD,
    ∴BF=AB-AD,
    ∵BQ=BC,
    ∴AQ=AB-BQ=AB-BC,
    ∵BC=AD,
    ∴AQ=AB-AD,
    ∴BF=AQ,
    ∴QF=BQ+BF=BQ+AQ=AB,
    ∵AB=CD,
    ∴QF=CD,
    ∵QM=CN,
    ∴QF-QM=CD-CN,即MF=DN,
    ∵MF∥DN,
    ∴∠NFH=∠NDH,
    在△MFH和△NDH中,

    ∴△MFH≌△NDH(AAS),
    ∴FH=DH,
    ∵G为CF的中点,
    ∴GH是△CFD的中位线,
    ∴GH=CD=×2=.
    【点睛】
    此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.
    23、 (1);(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.
    【详解】
    解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
    故答案为:;
    (2)画树状图为:

    共有6种等可能的结果数,其中乙摸到白球的结果数为2,
    所以乙摸到白球的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    24、(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)的值为95.
    【解析】
    (1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;
    (2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,根据两种耗材的总价相等列方程求解即可.
    【详解】
    (1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据题意,得.
    解方程,得.
    经检验,是原方程的解,且符合题意
    .
    答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.
    (2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,由题意得:

    整理,得
    解方程,得,(舍去).
    的值为95.
    【点睛】
    本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.

    相关试卷

    重庆市忠县达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份重庆市忠县达标名校2022年毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了计算3–等内容,欢迎下载使用。

    上海市崇明区市级名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份上海市崇明区市级名校2022年毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,在直角坐标系中,已知点P等内容,欢迎下载使用。

    河北省保定市名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份河北省保定市名校2022年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了计算的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map