年终活动
搜索
    上传资料 赚现金

    广西自治区钦州市重点达标名校2021-2022学年中考数学模拟精编试卷含解析

    广西自治区钦州市重点达标名校2021-2022学年中考数学模拟精编试卷含解析第1页
    广西自治区钦州市重点达标名校2021-2022学年中考数学模拟精编试卷含解析第2页
    广西自治区钦州市重点达标名校2021-2022学年中考数学模拟精编试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西自治区钦州市重点达标名校2021-2022学年中考数学模拟精编试卷含解析

    展开

    这是一份广西自治区钦州市重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,空心圆柱体的左视图是( )

    A. B. C. D.
    2.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )

    A.125° B.75° C.65° D.55°
    3.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为(  )

    A.9 B.10 C.12 D.14
    4.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是( )
    A.0<r<3 B.r>4 C.0<r<5 D.r>5
    5.某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,…,1.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.
    如果令
    其中i=1,2,…,1;j=1,2,…,1.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是(  )
    A.同意第1号或者第2号同学当选的人数
    B.同时同意第1号和第2号同学当选的人数
    C.不同意第1号或者第2号同学当选的人数
    D.不同意第1号和第2号同学当选的人数
    6.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为(  )
    A.m> B.m C.m= D.m=
    7.下列计算正确的是(  )
    A.(﹣2a)2=2a2 B.a6÷a3=a2
    C.﹣2(a﹣1)=2﹣2a D.a•a2=a2
    8.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )

    A.335°° B.255° C.155° D.150°
    9.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有(  )
    A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890
    C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=10890
    10.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是(  )

    A.60° B.35° C.30.5° D.30°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.

    12.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形.

    13.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_____.

    14.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.
    15.分解因式:=______.
    16.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.

    三、解答题(共8题,共72分)
    17.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:

    (1)a=   ,b=   ,c=   ;
    (2)扇形统计图中表示C等次的扇形所对的圆心角的度数为   度;
    (3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
    18.(8分) (1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.
    (2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.
    19.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).
    (1)求该反比例函数和一次函数的解析式;
    (2)求△AOB的面积;
    (3)若M(x1,y1),N(x2,y2)是反比例函数y=(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.

    20.(8分)先化简,再求值:(﹣m+1)÷,其中m的值从﹣1,0,2中选取.
    21.(8分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:

    请根据以上统计图提供的信息,解答下列问题:
    (1)共抽取   名学生进行问卷调查;
    (2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;
    (3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.
    (4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.
    22.(10分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:
    请将条形统计图补全;获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.
    23.(12分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间(单位:小时),将获得的数据分成四组,绘制了如下统计图(:,:,:,:),根据图中信息,解答下列问题:
    (1)这项工作中被调查的总人数是多少?
    (2)补全条形统计图,并求出表示组的扇形统计图的圆心角的度数;
    (3)如果李青想从组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.

    24.随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:
    收费方式
    月使用费/元
    包时上网时间/h
    超时费/(元/min)
    A
    7
    25
    0.01
    B
    m
    n
    0.01
    设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.
    (1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n= ;
    (2)写出yA与x之间的函数关系式;
    (3)选择哪种方式上网学习合算,为什么.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据从左边看得到的图形是左视图,可得答案.
    【详解】
    从左边看是三个矩形,中间矩形的左右两边是虚线,
    故选C.
    【点睛】
    本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
    2、D
    【解析】
    延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.
    【详解】
    延长CB,延长CB,
    ∵AD∥CB,
    ∴∠1=∠ADE=145,
    ∴∠DBC=180−∠1=180−125=55.
    故答案选:D.
    【点睛】
    本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.
    3、A
    【解析】
    利用平行四边形的性质即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=3,OD=OB==2,OA=OC=4,
    ∴△OBC的周长=3+2+4=9,
    故选:A.
    【点睛】
    题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
    4、D
    【解析】
    先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.
    【详解】
    ∵点P的坐标为(3,4),∴OP1.
    ∵点P(3,4)在⊙O内,∴OP<r,即r>1.
    故选D.
    【点睛】
    本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
    5、B
    【解析】
    先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加.
    【详解】
    第1,2,3,……,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,…,a1,1来确定,
    是否同意第2号同学当选依次由a1,2,a2,2,a3,2,…,a1,2来确定,
    ∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,
    故选B.
    【点睛】
    本题考查了推理应用题,题目比较新颖,是基础题.
    6、C
    【解析】
    试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
    ∴△=32-4×2m=9-8m=0,
    解得:m=.
    故选C.
    7、C
    【解析】
    解:选项A,原式=;
    选项B,原式=a3;
    选项C,原式=-2a+2=2-2a;
    选项D, 原式=
    故选C
    8、B
    【解析】
    ∵∠A+∠B+∠C=180°,∠A=75°,
    ∴∠B+∠C=180°﹣∠A=105°.
    ∵∠1+∠2+∠B+∠C=360°,
    ∴∠1+∠2=360°﹣105°=255°.
    故选B.
    点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.
    9、C
    【解析】
    设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.
    【详解】
    解:设房价比定价180元增加x元,
    根据题意,得(180+x﹣20)(50﹣)=1.
    故选:C.
    【点睛】
    此题考查一元二次方程的应用问题,主要在于找到等量关系求解.
    10、D
    【解析】
    根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
    【详解】
    连接OB,
    ∵点B是弧的中点,
    ∴∠AOB= ∠AOC=60°,
    由圆周角定理得,∠D= ∠AOB=30°,
    故选D.

    【点睛】
    此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、7.5
    【解析】
    试题解析:当旋转到达地面时,为最短影长,等于AB,
    ∵最小值3m,
    ∴AB=3m,
    ∵影长最大时,木杆与光线垂直,

    即AC=5m,
    ∴BC=4,
    又可得△CAB∽△CFE,

    ∵AE=5m,

    解得:EF=7.5m.
    故答案为7.5.
    点睛:相似三角形的性质:相似三角形的对应边成比例.
    12、,.
    【解析】
    试题分析:当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.
    试题解析:如图:

    当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,
    ∵B1C1=1,
    ∴BB1=,
    当点B的移动距离为时,四边形ABC1D1为矩形;
    当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,
    ∵B1C1=1,
    ∴BB1=,
    当点B的移动距离为时,四边形ABC1D1为菱形.
    考点:1.菱形的判定;2.矩形的判定;3.平移的性质.
    13、6﹣π
    【解析】
    过F作FM⊥BE于M,则∠FME=∠FMB=90°,

    ∵四边形ABCD是正方形,AB=2,
    ∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
    由勾股定理得:BD=2,
    ∵将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,
    ∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,
    ∴BM=FM=2,ME=2,
    ∴阴影部分的面积=×2×2+×4×2+-=6-π.
    故答案为:6-π.
    点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.
    14、950
    【解析】
    设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,得到工作日期间一天的销售收入为:8x+6x+5x=19x元,和周六销售销售收入为:12x+9.6x+7.5x=29.1x元,再结合题意得到10.1x﹣(5﹣3)=503,计算即可得到答案.
    【详解】
    解:设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,
    工作日期间一天的销售收入为:8x+6x+5x=19x元,
    周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,
    周六销售销售收入为:12x+9.6x+7.5x=29.1x元,
    周六销售收入与工作日期间一天销售收入的差为:29.1x﹣19x=10.1x元,
    由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍,
    所以这起错单发生在B、C饮料上(B、C一瓶的差价为2元),且是消费者付B饮料的钱,取走的是C饮料;
    于是有:10.1x﹣(5﹣3)=503
    解得:x=50
    工作日期间一天的销售收入为:19×50=950元,
    故答案为:950.
    【点睛】
    本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.
    15、x(x+2)(x﹣2).
    【解析】
    试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
    考点:提公因式法与公式法的综合运用;因式分解.
    16、4
    【解析】
    分析:首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
    详解:设△ABP中AB边上的高是h.
    ∵S△PAB=S矩形ABCD,
    ∴AB•h=AB•AD,
    ∴h=AD=2,
    ∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.

    在Rt△ABE中,∵AB=4,AE=2+2=4,
    ∴BE=,
    即PA+PB的最小值为4.
    故答案为4.
    点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)2、45、20;(2)72;(3)
    【解析】
    分析:(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;
    (2)用360°乘以C等次百分比可得;
    (3)画出树状图,由概率公式即可得出答案.
    详解:(1)本次调查的总人数为12÷30%=40人,
    ∴a=40×5%=2,b=×100=45,c=×100=20,
    (2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,
    (3)画树状图,如图所示:

    共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,
    故P(选中的两名同学恰好是甲、乙)=.
    点睛:此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.
    18、 (1)3;(2) x﹣y,1.
    【解析】
    (1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;
    (2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
    【详解】
    (1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018
    =3×+2-+3-1-1,
    =+2−+3-1-1,
    =3;
    (2)(x﹣)÷,
    =,
    =
    =x-y,
    当x=,y=-1时,原式=−+1=1.
    【点睛】
    本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.
    19、 (1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限.
    【解析】
    (1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,
    ∴反比例函数的解析式为y=﹣;
    把点B(6,n)代入,可得n=﹣1,
    ∴B(6,﹣1).
    把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,
    解得,
    ∴一次函数的解析式为y=﹣x+2;
    (2)∵y=﹣x+2,令y=0,则x=4,
    ∴C(4,0),即OC=4,
    ∴△AOB的面积=×4×(3+1)=8;
    (3)∵反比例函数y=﹣的图象位于二、四象限,
    ∴在每个象限内,y随x的增大而增大,
    ∵x1<x2,y1<y2,
    ∴M,N在相同的象限,
    ∴点M、N在第二象限,或点M、N在第四象限.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.
    20、 ,当m=0时,原式=﹣1.
    【解析】
    原式括号中两项通分,并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果.根据分数分母不为零的性质,不等于-1、2,将代入原式即可解出答案.
    【详解】
    解:原式,



    ∵且,
    ∴当时,原式.
    【点睛】
    本题主要考查分数的性质、通分,四则运算法则以及倒数.
    21、(1)1;(2)详见解析;(3)750;(4).
    【解析】
    (1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;
    (2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;
    (3)计算足球的百分比,根据样本估计总体,即可解答;
    (4)利用概率公式计算即可.
    【详解】
    (1)30÷15%=1(人).
    答:共抽取1名学生进行问卷调查;
    故答案为1.
    (2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.
    如图所示:

    (3)3000×0.25=750(人).
    答:全校学生喜欢足球运动的人数为750人.
    (4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)

    共有25种等可能的结果数,选同一项目的结果数为5,
    所以甲乙两人中有且选同一项目的概率P(A)=.
    【点睛】
    本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
    22、(1)答案见解析;(2).
    【解析】
    【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;
    (2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.
    【详解】(1)10÷25%=40(人),
    获一等奖人数:40-8-6-12-10=4(人),
    补全条形图如图所示:

    (2)七年级获一等奖人数:4×=1(人),
    八年级获一等奖人数:4×=1(人),
    ∴ 九年级获一等奖人数:4-1-1=2(人),
    七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,
    九年级获一等奖的同学用P1 、P2表示,树状图如下:

    共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,
    则所选出的两人中既有七年级又有九年级同学的概率P=.
    【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.
    23、(1)50人;(2)补全图形见解析,表示A组的扇形统计图的圆心角的度数为108°;(3).
    【解析】
    分析:(1)、根据B的人数和百分比得出样本容量;(2)、根据总人数求出C组的人数,根据A组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率.
    详解:(1)被调查的总人数为19÷38%=50人;
    (2)C组的人数为50﹣(15+19+4)=12(人),
    补全图形如下:

    表示A组的扇形统计图的圆心角的度数为360°×=108°;
    (3)画树状图如下,

    共有12个可能的结果,恰好选中甲的结果有6个, ∴P(恰好选中甲)=.
    点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型.理解频数、频率与样本容量之间的关系是解题的关键.
    24、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.
    【解析】
    (1)由图象知:m=10,n=50;
    (2)根据已知条件即可求得yA与x之间的函数关系式为:当x≤25时,yA=7;当x>25时,yA=7+(x﹣25)×0.01;
    (3)先求出yB与x之间函数关系为:当x≤50时,yB=10;当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.
    【详解】
    解:(1)由图象知:m=10,n=50;
    故答案为:10;50;
    (2)yA与x之间的函数关系式为:
    当x≤25时,yA=7,
    当x>25时,yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8,
    ∴yA=;
    (3)∵yB与x之间函数关系为:
    当x≤50时,yB=10,
    当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20,
    当0<x≤25时,yA=7,yB=50,
    ∴yA<yB,∴选择A方式上网学习合算,
    当25<x≤50时.yA=yB,即0.6x﹣8=10,解得;x=30,
    ∴当25<x<30时,yA<yB,选择A方式上网学习合算,
    当x=30时,yA=yB,选择哪种方式上网学习都行,
    当30<x≤50,yA>yB,选择B方式上网学习合算,
    当x>50时,∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴选择B方式上网学习合算,
    综上所述:当0<x<30时,yA<yB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当x>30时,yA>yB,选择B方式上网学习合算.
    【点睛】
    本题考查一次函数的应用.

    相关试卷

    湖北省省直辖县重点达标名校2021-2022学年中考数学模拟精编试卷含解析:

    这是一份湖北省省直辖县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了方程的解是.等内容,欢迎下载使用。

    邗江实验重点名校2021-2022学年中考数学模拟精编试卷含解析:

    这是一份邗江实验重点名校2021-2022学年中考数学模拟精编试卷含解析,共22页。试卷主要包含了下列计算结果是x5的为,下列计算结果为a6的是等内容,欢迎下载使用。

    广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析:

    这是一份广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,点P等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map