|试卷下载
搜索
    上传资料 赚现金
    广西省梧州市2021-2022学年中考数学四模试卷含解析
    立即下载
    加入资料篮
    广西省梧州市2021-2022学年中考数学四模试卷含解析01
    广西省梧州市2021-2022学年中考数学四模试卷含解析02
    广西省梧州市2021-2022学年中考数学四模试卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西省梧州市2021-2022学年中考数学四模试卷含解析

    展开
    这是一份广西省梧州市2021-2022学年中考数学四模试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图是由5个相同的正方体搭成的几何体,其左视图是( )

    A. B.
    C. D.
    2.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(  )

    A. B. C. D.
    3.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=(  )
    A. B.2 C. D.

    4.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是(  )
    A.75° B.60° C.45° D.30°
    5.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的(  )
    A. B.
    C. D.
    6.国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为(  )
    A.13.75×106 B.13.75×105 C.1.375×108 D.1.375×109
    7.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )

    A.米 B.米 C.米 D.米
    8.实数a,b在数轴上的位置如图所示,以下说法正确的是( )

    A.a+b=0 B.b<a C.ab>0 D.|b|<|a|
    9.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )

    A. B. C. D.
    10.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的(  )
    A.平均数 B.中位数 C.众数 D.方差
    11.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是(  )

    A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE
    12.给出下列各数式,① ② ③ ④ 计算结果为负数的有(  )
    A.1个 B.2个 C.3个 D.4个
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.

    14.方程的根是__________.
    15.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.

    16.计算的结果是__________.
    17.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.
    18.点A(1,2),B(n,2)都在抛物线y=x2﹣4x+m上,则n=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:
    (1)小新的速度为_____米/分,a=_____;并在图中画出y2与x的函数图象
    (2)求小新路过小华家后,y1与x之间的函数关系式.
    (3)直接写出两人离小华家的距离相等时x的值.

    20.(6分)先化简,再求值,,其中x=1.
    21.(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:
    该超市“元旦”期间共销售   个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是   度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
    22.(8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?
    23.(8分)对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.
    (1)当直线m的表达式为y=x时,
    ①在点,,中,直线m的平行点是______;
    ②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐标.
    (2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.
    24.(10分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.
    (1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;
    (2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.
    25.(10分)如图,菱形中,分别是边的中点.求证:.

    26.(12分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.

    27.(12分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
    (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
    (2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据三视图的定义即可判断.
    【详解】
    根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.
    【点睛】
    本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.
    2、C
    【解析】
    左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确.
    故此题选C.
    3、C
    【解析】
    如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
    【详解】
    解:如图所示,

    ∵BD=2、CD=1,
    ∴BC===,
    则sin∠BCA===,
    故选C.
    【点睛】
    本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
    4、C
    【解析】
    根据直角三角形两锐角互余即可解决问题.
    【详解】
    解:∵直角三角形两锐角互余,
    ∴另一个锐角的度数=90°﹣45°=45°,
    故选C.
    【点睛】
    本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.
    5、D
    【解析】
    当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.
    【详解】
    解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,
    ∴直线经过一、二、四象限,双曲线在二、四象限.
    故选D.
    【点睛】
    本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.
    6、D
    【解析】
    用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
    【详解】
    13.75亿=1.375×109.
    故答案选D.
    【点睛】
    本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.
    7、A
    【解析】
    利用锐角三角函数关系即可求出小刚上升了的高度.
    【详解】
    在Rt△AOB中,∠AOB=90°,AB=300米,
    BO=AB•sinα=300sinα米.
    故选A.
    【点睛】
    此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
    8、D
    【解析】
    根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.
    【详解】
    A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;
    B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;
    C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;
    D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.
    ∴ 选D.
    9、C
    【解析】
    试题解析:左视图如图所示:

    故选C.
    10、B
    【解析】
    由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的
    中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8
    名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的
    分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
    故选B.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反
    映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统
    计量进行合理的选择和恰当的运用.
    11、A
    【解析】
    由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
    【详解】
    ∵EB=CF,
    ∴EB+BF=CF+BF,即EF=BC,
    又∵∠A=∠D,
    A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.
    B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.
    C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.
    D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,
    故选A.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    12、B
    【解析】
    ∵①;②;③;④;
    ∴上述各式中计算结果为负数的有2个.
    故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    求出黑色区域面积与正方形总面积之比即可得答案.
    【详解】
    图中有9个小正方形,其中黑色区域一共有3个小正方形,
    所以随意投掷一个飞镖,击中黑色区域的概率是,
    故答案为.
    【点睛】
    本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率.
    14、1.
    【解析】
    把无理方程转化为整式方程即可解决问题.
    【详解】
    两边平方得到:2x﹣1=1,解得:x=1,经检验:x=1是原方程的解.
    故答案为:1.
    【点睛】
    本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验.
    15、1
    【解析】
    如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.
    【详解】
    如图作点D关于BC的对称点D′,连接PD′,ED′,
    在Rt△EDD′中,∵DE=6,DD′=1,
    ∴ED′==10,
    ∵DP=PD′,
    ∴PD+PF=PD′+PF,
    ∵EF=EA=2是定值,
    ∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,
    ∴PF+PD的最小值为1,
    故答案为1.

    【点睛】
    本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.
    16、1
    【解析】
    分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果.
    详解:原式
    故答案为:1.
    点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.
    17、-1
    【解析】
    根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.
    【详解】
    解:由已知得△=0,即4+4m=0,解得m=-1.
    故答案为-1.
    【点睛】
    本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.
    18、1
    【解析】
    根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值.
    【详解】
    :∵点A(1,2),B(n,2)都在抛物线y=x2-4x+m上,
    ∴ ,
    解得 或 ,
    ∴点B为(1,2)或(1,2),
    ∵点A(1,2),
    ∴点B只能为(1,2),
    故n的值为1,
    故答案为:1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)60;960;图见解析;(2)y1=60x﹣240(4≤x≤20);
    (3)两人离小华家的距离相等时,x的值为2.4或12.
    【解析】
    (1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;
    (2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;
    (3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.
    【详解】
    (1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分,
    小新按此速度再走16分钟到达书店,则a=16×60=960米,
    小华到书店的时间为960÷40=24分钟,
    则y2与x的函数图象为:

    故小新的速度为60米/分,a=960;
    (2)当4≤x≤20时,设所求函数关系式为y1=kx+b(k≠0),
    将点(4,0),(20,960)代入得:

    解得:,
    ∴y1=60x﹣240(4≤x≤20时)
    (3)由图可知,小新到小华家之前的函数关系式为:y=240﹣6x,
    ①当两人分别在小华家两侧时,若两人到小华家距离相同,
    则240﹣6x=40x,
    解得:x=2.4;
    ②当小新经过小华家并追上小华时,两人到小华家距离相同,
    则60x﹣240=40x,
    解得:x=12;
    故两人离小华家的距离相等时,x的值为2.4或12.
    20、1.
    【解析】
    先根据分式的运算法则进行化简,再代入求值.
    【详解】
    解:原式=()×=×
    =;
    将x=1代入原式==1.
    【点睛】
    分式的化简求值
    21、(1)2400,60;(2)见解析;(3)500
    【解析】
    整体分析:
    (1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.
    解:(1)共销售绿色鸡蛋:1200÷50%=2400个,
    A品牌所占的圆心角:×360°=60°;
    故答案为2400,60;
    (2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,
    补全统计图如图:

    (3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.
    22、解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.
    根据题意,得,
    解得x=1.
    经检验,x=1是方程的解且符合题意.
    1.5 x=2.
    ∴甲,乙两公司单独完成此项工程,各需1天,2天.
    (2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,
    根据题意得12(y+y﹣1500)=10100解得y=5000,
    甲公司单独完成此项工程所需的施工费:1×5000=100000(元);
    乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);
    ∴让一个公司单独完成这项工程,甲公司的施工费较少.
    【解析】
    (1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.
    (2)分别求得两个公司施工所需费用后比较即可得到结论.
    23、(1)①,;②,,,;(2).
    【解析】
    (1)①根据平行点的定义即可判断;
    ②分两种情形:如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;
    (2)如图,直线OE的解析式为,设直线BC//OE交x轴于C,作CD⊥OE于D. 设⊙A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;
    【详解】
    解:(1)①因为P2、P3到直线y=x的距离为1,
    所以根据平行点的定义可知,直线m的平行点是,,
    故答案为,.
    ②解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线.
    设该直线与x轴交于点A,与y轴交于点B.
    如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.

    由直线m的表达式为y=x,可知∠OAB=∠OBA=45°.
    所以.
    直线AB与⊙O的交点即为满足条件的点Q.
    连接,作轴于点N,可知.
    在中,可求.
    所以.
    在中,可求.
    所以.
    所以点的坐标为.
    同理可求点的坐标为.

    如图2,当点B在原点下方时,可求点的坐标为点的坐标为,
    综上所述,点Q的坐标为,,,.
    (2)如图,直线OE的解析式为,设直线BC∥OE交x轴于C,作CD⊥OE于D.

    当CD=1时,在Rt△COD中,∠COD=60°,
    ∴,
    设⊙A与直线BC相切于点F,
    在Rt△ACE中,同法可得,
    ∴,
    ∴,
    根据对称性可知,当⊙A在y轴左侧时,,
    观察图象可知满足条件的N的值为:.
    【点睛】
    此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.
    24、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【解析】
    (1)根据题意可以得到y关于x的函数解析式,本题得以解决;
    (2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.
    【详解】
    (1)由题意可得,
    y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,
    即y与x的函数关系式为y=﹣50x+10500;
    (2)由题意可得,,得x,
    ∵x是整数,y=﹣50x+10500,
    ∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,
    答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【点睛】
    本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
    25、证明见解析.
    【解析】
    根据菱形的性质,先证明△ABE≌△ADF,即可得解.
    【详解】
    在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.
    ∵点E,F分别是BC,CD边的中点,
    ∴BE=BC,DF=CD,
    ∴BE=DF.
    ∴△ABE≌△ADF,
    ∴AE=AF.
    26、 (8+8)m.
    【解析】
    利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.
    【详解】
    在Rt△EBC中,有BE=EC×tan45°=8m,
    在Rt△AEC中,有AE=EC×tan30°=8m,
    ∴AB=8+8(m).
    【点睛】
    本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.
    27、(1)111,51;(2)11.
    【解析】
    (1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;
    (2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.
    【详解】
    解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:

    解得:x=51,
    经检验x=51是原方程的解,
    则甲工程队每天能完成绿化的面积是51×2=111(m2),
    答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;
    (2)设应安排甲队工作y天,根据题意得:
    1.4y+×1.25≤8,
    解得:y≥11,
    答:至少应安排甲队工作11天.

    相关试卷

    2023年广西梧州市中考数学二模试卷(含解析): 这是一份2023年广西梧州市中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广西省梧州市2021-2022学年中考数学全真模拟试题含解析: 这是一份广西省梧州市2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    2022年广西省河池市中考数学四模试卷含解析: 这是一份2022年广西省河池市中考数学四模试卷含解析,共18页。试卷主要包含了的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map