丹东市重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析
展开这是一份丹东市重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共26页。试卷主要包含了答题时请按要求用笔,若=1,则符合条件的m有,下列各式中计算正确的是,3的倒数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
A. B. C. D.
2.如图是某几何体的三视图,下列判断正确的是( )
A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2
C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为2
3.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是
A.3 B. C. D.4
4.如图,下列各数中,数轴上点A表示的可能是( )
A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根
5.下列函数中,当x>0时,y值随x值增大而减小的是( )
A.y=x2 B.y=x﹣1 C. D.
6.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
A. B. C. D.
7.若=1,则符合条件的m有( )
A.1个 B.2个 C.3个 D.4个
8.下列各式中计算正确的是
A. B. C. D.
9.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是( )
A. B. C. D.
10.3的倒数是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.
12.分解因式:4m2﹣16n2=_____.
13.化简:①=_____;②=_____;③=_____.
14.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2; ⑤3a+c<1.其中,正确结论的序号是________________.
15.函数y=中,自变量x的取值范围是_________.
16.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.
三、解答题(共8题,共72分)
17.(8分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.
(1)写出抛物线的函数表达式;
(2)判断△ABC的形状,并证明你的结论;
(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.
18.(8分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE是边CD的中线,且∠AOB+∠COD=180°
(1)如图2,当△ABO是等边三角形时,求证:OE=AB;
(2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=AB;
(3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,
①试探究α、β之间存在的数量关系?
②结论“OE=AB”还成立吗?若成立,请你证明;若不成立,请说明理由.
19.(8分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,.
(1)求抛物线的解析式;
(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。
20.(8分)(问题发现)
(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;
(拓展探究)
(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(解决问题)
(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.
21.(8分)如图,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且.
若半圆上有一点,则的最大值为________;向右沿直线平移得到;
①如图,若截半圆的的长为,求的度数;
②当半圆与的边相切时,求平移距离.
22.(10分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.
(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;
(2)当直线l与AD边有公共点时,求t的取值范围.
23.(12分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
求,,的值;求四边形的面积.
24.如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.
求证:是⊙的切线;若,且,求⊙的半径与线段的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
【详解】由二次函数的图象可知,
,,
当时,,
的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
2、A
【解析】
试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,
再根据左视图的高度得出圆柱体的高为2;
故选A.
考点:由三视图判断几何体.
3、B
【解析】
试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.
连接AC,
∵∠AOC=∠ADC=90°,AC=AC,OC=CD,
∴Rt△AOC≌Rt△ADC,
∴AD=AO=2,
连接CD,设EF=x,
∴DE2=EF•OE,
∵CF=1,
∴DE=,
∴△CDE∽△AOE,
∴=,
即=,
解得x=,
S△ABE===.
故选B.
考点:1.切线的性质;2.三角形的面积.
4、C
【解析】
解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2,
故根据数轴可知,
故选C
5、D
【解析】
A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误
B、k>0,y随x增大而增大,故此选项错误
C、B、k>0,y随x增大而增大,故此选项错误
D、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确
6、A
【解析】
根据轴对称图形的概念求解.
解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,
故选A.
“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
7、C
【解析】
根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.
【详解】
=1
m2-9=0或m-2= 1
即m= 3或m=3,m=1
m有3个值
故答案选C.
【点睛】
本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.
8、B
【解析】
根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断.
【详解】
A. ,故错误.
B. ,正确.
C. ,故错误.
D. , 故错误.
故选B.
【点睛】
考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.
9、C
【解析】
根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.
【详解】
由题意可得:PB=3﹣t,BQ=2t,
则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,
故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.
故选C.
【点睛】
此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.
10、C
【解析】
根据倒数的定义可知.
解:3的倒数是.
主要考查倒数的定义,要求熟练掌握.需要注意的是:
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.
【详解】
∵点B的坐标为(2,3),点C为OB的中点,
∴C点坐标为(1,1.5),
∴k=1×1.5=1.5,即反比例函数解析式为y=,
∴S△OAD=×1.5=.
故答案为:.
【点睛】
本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .
12、4(m+2n)(m﹣2n).
【解析】
原式提取4后,利用平方差公式分解即可.
【详解】
解:原式=4( ).
故答案为
【点睛】
本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
13、4 5 5
【解析】
根据二次根式的性质即可求出答案.
【详解】
①原式=4;②原式==5;③原式==5,
故答案为:①4;②5;③5
【点睛】
本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
14、②③④⑤
【解析】
试题解析:∵二次函数与x轴有两个交点,
∴b2-4ac>1,故①错误,
观察图象可知:当x>-1时,y随x增大而减小,故②正确,
∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,
∴x=1时,y=a+b+c<1,故③正确,
∵当m>2时,抛物线与直线y=m没有交点,
∴方程ax2+bx+c-m=1没有实数根,故④正确,
∵对称轴x=-1=-,
∴b=2a,
∵a+b+c<1,
∴3a+c<1,故⑤正确,
故答案为②③④⑤.
15、x≤1且x≠﹣1
【解析】
由二次根式中被开方数为非负数且分母不等于零求解可得结论.
【详解】
根据题意,得:,解得:x≤1且x≠﹣1.
故答案为x≤1且x≠﹣1.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(1)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
16、60°
【解析】
先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.
【详解】
(6-2)×180°÷6=120°,
∠1=120°-60°=60°.
故答案为:60°.
【点睛】
题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) ×180°是解答本题的关键.
三、解答题(共8题,共72分)
17、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
【解析】
(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;
(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8 ,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;
(3)利用勾股定理计算出AC=10 ,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2 ,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.
【详解】
解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),
把A(8,9),B(0,1)代入y=x2+bx+c得,
解得,
∴抛物线解析式为y=x2﹣7x+1;
故答案为y=x2﹣7x+1;
(2)△ABC为直角三角形.理由如下:
当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),
作AM⊥y轴于M,CN⊥y轴于N,如图,
∵B(0,1),A(8,9),C(1,﹣5),
∴BM=AM=8,BN=CN=1,
∴△ABM和△BNC都是等腰直角三角形,
∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,
∴∠ABC=90°,
∴△ABC为直角三角形;
(3)∵AB=8,BN=1,
∴AC=10,
∴Rt△ABC的内切圆的半径=,
设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,
∵I为△ABC的内心,
∴AI、BI为角平分线,
∴BI⊥y轴,
而AI⊥PQ,
∴PQ为△ABC的外角平分线,
易得y轴为△ABC的外角平分线,
∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,
它们到直线AB、BC、AC距离相等,
BI=×2=4,
而BI⊥y轴,
∴I(4,1),
设直线AI的解析式为y=kx+n,
则,
解得,
∴直线AI的解析式为y=2x﹣7,
当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);
设直线AP的解析式为y=﹣x+p,
把A(8,9)代入得﹣4+n=9,解得n=13,
∴直线AP的解析式为y=﹣x+13,
当y=1时,﹣x+13=1,则P(24,1)
当x=0时,y=﹣x+13=13,则Q(0,13),
综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.
18、(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析.
【解析】
(1)作OH⊥AB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明△OCE≌△OBH,根据全等三角形的性质证明;
(2)证明△OCD≌△OBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;
(3)①根据等腰三角形的性质、三角形内角和定理计算;
②延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明.
【详解】
(1)作OH⊥AB于H,
∵AD、BC的垂直平分线相交于点O,
∴OD=OA,OB=OC,
∵△ABO是等边三角形,
∴OD=OC,∠AOB=60°,
∵∠AOB+∠COD=180°
∴∠COD=120°,
∵OE是边CD的中线,
∴OE⊥CD,
∴∠OCE=30°,
∵OA=OB,OH⊥AB,
∴∠BOH=30°,BH=AB,
在△OCE和△BOH中,
,
∴△OCE≌△OBH,
∴OE=BH,
∴OE=AB;
(2)∵∠AOB=90°,∠AOB+∠COD=180°,
∴∠COD=90°,
在△OCD和△OBA中,
,
∴△OCD≌△OBA,
∴AB=CD,
∵∠COD=90°,OE是边CD的中线,
∴OE=CD,
∴OE=AB;
(3)①∵∠OAD=α,OA=OD,
∴∠AOD=180°﹣2α,
同理,∠BOC=180°﹣2β,
∵∠AOB+∠COD=180°,
∴∠AOD+∠COB=180°,
∴180°﹣2α+180°﹣2β=180°,
整理得,α+β=90°;
②延长OE至F,使EF=OE,连接FD、FC,
则四边形FDOC是平行四边形,
∴∠OCF+∠COD=180°,,
∴∠AOB=∠FCO,
在△FCO和△AOB中,
,
∴△FCO≌△AOB,
∴FO=AB,
∴OE=FO=AB.
【点睛】
本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
19、(1);(2) (3,-4) 或(5,4)或(-5,4)
【解析】
(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;
(2)先画出存在的点,然后通过平移和计算确定坐标;
【详解】
解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)
设抛物线的解析式为y=ax2+bx+c
则有: 解得
所以函数解析式为:
(2)存在,(3,-4) 或(5,4)或(-5,4)
理由如下:如图:
P1相当于C点向右平移了5个单位长度,则坐标为(5,4);
P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);
设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,
则有A P3=BC, B P3=AC
∴ 即 (舍去)
P3坐标为(3,-4)
【点睛】
本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.
20、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8
【解析】
(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;
(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;
(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.
【详解】
(1)∵AB=AD,CB=CD,
∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,
∴AC垂直平分BD,
故答案为AC垂直平分BD;
(2)四边形FMAN是矩形.理由:
如图2,连接AF,
∵Rt△ABC中,点F为斜边BC的中点,
∴AF=CF=BF,
又∵等腰三角形ABD 和等腰三角形ACE,
∴AD=DB,AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四边形AMFN是矩形;
(3)BD′的平方为16+8或16﹣8.
分两种情况:
①以点A为旋转中心将正方形ABCD逆时针旋转60°,
如图所示:过D'作D'E⊥AB,交BA的延长线于E,
由旋转可得,∠DAD'=60°,
∴∠EAD'=30°,
∵AB=2=AD',
∴D'E=AD'=,AE=,
∴BE=2+,
∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8
②以点A为旋转中心将正方形ABCD顺时针旋转60°,
如图所示:过B作BF⊥AD'于F,
旋转可得,∠DAD'=60°,
∴∠BAD'=30°,
∵AB=2=AD',
∴BF=AB=,AF=,
∴D'F=2﹣,
∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8
综上所述,BD′平方的长度为16+8或16﹣8.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.
21、(1);(2)①;②
【解析】
(1)由图可知当点F与点D重合时,AF最大,根据勾股定理即可求出此时AF的长;
(2)①连接EG、EH.根据的长为π可求得∠GEH=60°,可得△GEH是等边三角形,根据等边三角形的三个角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根据平角的定义即可求出∠A'GO的度数;
②分C'A'与半圆相切和B'A'与半圆相切两种情况进行讨论,利用切线的性质、勾股定理、切斜长定理等知识进行解答即可得出答案.
【详解】
解:
(1)当点F与点D重合时,AF最大,
AF最大=AD==,
故答案为:;
(2)①连接、.
∵,
∴.
∵,
∴是等边三角形,
∴.
∵,
∴,
∴,
∵,
∴,
∵,
∴,
∴.
②当切半圆于时,连接,则.
∵,
∴切半圆于点,
∴.
∵,
∴,
∴平移距离为.
当切半圆于时,连接并延长于点,
∵,,,
∴,
∵,
∴,
∵,
∴,
∵,
∴.
∵,
∴.
【点睛】
本题主要考查了弧长公式、勾股定理、切线的性质,作出过切点的半径构造出直角三角形是解决此题的关键.
22、 (1)点A在直线l上,理由见解析;(2)≤t≤4.
【解析】
(1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;
(2)当直线l经过点D时,设l的解析式代入数值解出即可
【详解】
(1)此时点A在直线l上.
∵BC=AB=2,点O为BC中点,
∴点B(-1,0),A(-1,2).
把点A的横坐标x=-1代入解析式y=2x+4,得
y=2,等于点A的纵坐标2,
∴此时点A在直线l上.
(2)由题意可得,点D(1,2),及点M(-2,0),
当直线l经过点D时,设l的解析式为y=kx+t(k≠0),
∴解得
由(1)知,当直线l经过点A时,t=4.
∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.
【点睛】
本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
23、(1),,.(2)6
【解析】
(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
【详解】
解:(1)∵点在上,
∴,
∵点在上,且,
∴.
∵过,两点,
∴,
解得,
∴,,.
(2)如图,延长,交于点,则.
∵轴,轴,
∴,,
∴,,
∴
.
∴四边形的面积为6.
【点睛】
考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
24、(1)证明参见解析;(2)半径长为,=.
【解析】
(1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.
【详解】
解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴. 设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.
【点睛】
1.圆的切线的判定;2.锐角三角函数的应用.
相关试卷
这是一份绥化市重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了一、单选题等内容,欢迎下载使用。
这是一份日喀则市重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了“绿水青山就是金山银山”等内容,欢迎下载使用。
这是一份毕节市重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了下列计算正确的是,﹣3的绝对值是等内容,欢迎下载使用。