所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
湖北省各地区2022年中考数学真题按题型分层分类汇编-04填空题(基础题)
展开
这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-04填空题(基础题),共30页。试卷主要包含了+|﹣3|= ,2= ,9的算术平方根是 ,计算,观察下列一组数,因式分解等内容,欢迎下载使用。
湖北省各地区2022年中考数学真题按题型分层分类汇编-04填空题(基础题)
一.有理数的混合运算(共2小题)
1.(2022•随州)计算:3×(﹣1)+|﹣3|= .
2.(2022•宜昌)中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:﹣1﹣(﹣3)2= .
二.科学记数法—表示较大的数(共1小题)
3.(2022•十堰)袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为2.5×10n,则n= .
三.科学记数法—表示较小的数(共1小题)
4.(2022•湖北)科学家在实验室中检测出某种病毒的直径约为0.000000103米,该直径用科学记数法表示为 米.
四.算术平方根(共2小题)
5.(2022•恩施州)9的算术平方根是 .
6.(2022•鄂州)计算:= .
五.规律型:数字的变化类(共1小题)
7.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为an,且满足+=.则a4= ,a2022= .
六.规律型:图形的变化类(共1小题)
8.(2022•十堰)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,50节链条总长度为 cm.
七.提公因式法与公式法的综合运用(共1小题)
9.(2022•恩施州)因式分解:a3﹣6a2+9a= .
八.分式有意义的条件(共1小题)
10.(2022•湖北)若分式有意义,则x的取值范围是 .
九.分式的加减法(共1小题)
11.(2022•武汉)计算﹣的结果是 .
一十.二次根式的性质与化简(共1小题)
12.(2022•武汉)计算的结果是 .
一十一.二次根式的乘除法(共1小题)
13.(2022•随州)已知m为正整数,若是整数,则根据==3可知m有最小值3×7=21.设n为正整数,若是大于1的整数,则n的最小值为 ,最大值为 .
一十二.二次根式的混合运算(共1小题)
14.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是 .
一十三.解二元一次方程组(共1小题)
15.(2022•随州)已知二元一次方程组,则x﹣y的值为 .
一十四.二元一次方程组的应用(共1小题)
16.(2022•湖北)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货 吨.
一十五.解一元二次方程-配方法(共1小题)
17.(2022•荆州)一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,则k的值是 .
一十六.根的判别式(共1小题)
18.(2022•鄂州)若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则+的值为 .
一十七.根与系数的关系(共1小题)
19.(2022•湖北)若一元二次方程x2﹣4x+3=0的两个根是x1,x2,则x1•x2的值是 .
一十八.在数轴上表示不等式的解集(共1小题)
20.(2022•十堰)关于x的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为 .
一十九.点的坐标(共1小题)
21.(2022•鄂州)中国象棋文化历史久远.某校开展了以“纵横之间有智慧 攻防转换有乐趣”为主题的中国象棋文化节.如图所示是某次对弈的残局图,如果建立平面直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),那么“兵”在同一坐标系下的坐标是 .
二十.规律型:点的坐标(共1小题)
22.(2022•荆门)如图,过原点的两条直线分别为l1:y=2x,l2:y=﹣x,过点A(1,0)作x轴的垂线与l1交于点A1,过点A1作y轴的垂线与l2交于点A2,过点A2作x轴的垂线与l1交于点A3,过点A3作y轴的垂线与l2交于点A4,过点A4作x轴的垂线与l1交于点A5,……,依次进行下去,则点A20的坐标为 .
二十一.动点问题的函数图象(共1小题)
23.(2022•湖北)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为 .
二十二.待定系数法求反比例函数解析式(共1小题)
24.(2022•湖北)在反比例函数y=的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4是一个完全平方式,则该反比例函数的解析式为 .
二十三.二次函数图象与几何变换(共1小题)
25.(2022•荆州)规定;两个函数y1,y2的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数y1=2x+2与y2=﹣2x+2的图象关于y轴对称,则这两个函数互为“Y函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为 .
二十四.平行线的性质(共2小题)
26.(2022•宜昌)如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方向,则∠ACB的大小是 .
27.(2022•湖北)如图,直线a∥b,直线c与直线a,b相交,若∠1=54°,则∠3= 度.
二十五.三角形的重心(共1小题)
28.(2022•荆门)如图,点G为△ABC的重心,D,E,F分别为BC,CA,AB的中点,具有性质:AG:GD=BG:GE=CG:GF=2:1.已知△AFG的面积为3,则△ABC的面积为 .
二十六.全等三角形的判定(共1小题)
29.(2022•湖北)如图,已知AB∥DE,AB=DE,请你添加一个条件 ,使△ABC≌△DEF.
二十七.直角三角形斜边上的中线(共1小题)
30.(2022•荆州)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若CE=AE=1,则CD= .
二十八.勾股定理(共1小题)
31.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是 .
二十九.勾股数(共1小题)
32.(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是 (结果用含m的式子表示).
三十.平行四边形的性质(共1小题)
33.(2022•荆州)如图,点E,F分别在▱ABCD的边AB,CD的延长线上,连接EF,分别交AD,BC于G,H.添加一个条件使△AEG≌△CFH,这个条件可以是 .(只需写一种情况)
三十一.矩形的性质(共1小题)
34.(2022•宜昌)如图,在矩形ABCD中,E是边AD上一点,F,G分别是BE,CE的中点,连接AF,DG,FG,若AF=3,DG=4,FG=5,矩形ABCD的面积为 .
三十二.垂径定理的应用(共1小题)
35.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 cm(玻璃瓶厚度忽略不计).
三十三.圆周角定理(共1小题)
36.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为 .
三十四.轨迹(共1小题)
37.(2022•宜昌)如图,点A,B,C都在方格纸的格点上,△ABC绕点A顺时针方向旋转90°后得到△AB'C',则点B运动的路径的长为 .
三十五.特殊角的三角函数值(共1小题)
38.(2022•荆门)计算:+cos60°﹣(﹣2022)0= .
三十六.解直角三角形的应用(共1小题)
39.(2022•武汉)如图,沿AB方向架桥修路,为加快施工进度,在直线AB上湖的另一边的D处同时施工.取∠ABC=150°,BC=1600m,∠BCD=105°,则C,D两点的距离是 m.
三十七.解直角三角形的应用-仰角俯角问题(共1小题)
40.(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 m.
(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).
三十八.众数(共3小题)
41.(2022•荆门)八(1)班一组女生的体重(单位:kg)分别是:35,36,38,40,42,42,45.则这组数据的众数为 .
42.(2022•鄂州)为了落实“双减”,增强学生体质,阳光学校篮球兴趣小组开展投篮比赛活动.6名选手投中篮圈的个数分别为2,3,3,4,3,5,则这组数据的众数是 .
43.(2022•武汉)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是 .
尺码/cm
24
24.5
25
25.5
26
销售量/双
1
3
10
4
2
三十九.列表法与树状图法(共2小题)
44.(2022•湖北)从2名男生和2名女生中任选2名学生参加志愿者服务,那么选出的2名学生中至少有1名女生的概率是 .
45.(2022•湖北)小聪和小明两个同学玩“石头,剪刀、布”的游戏,随机出手一次是平局的概率是 .
湖北省各地区2022年中考数学真题按题型分层分类汇编-03填空题(基础题)
参考答案与试题解析
一.有理数的混合运算(共2小题)
1.(2022•随州)计算:3×(﹣1)+|﹣3|= 0 .
【解答】解:3×(﹣1)+|﹣3|=﹣3+3=0.
故答案为:0.
2.(2022•宜昌)中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:﹣1﹣(﹣3)2= ﹣10 .
【解答】解:﹣1﹣(﹣3)2
=﹣1﹣9
=﹣10,
故答案为:﹣10.
二.科学记数法—表示较大的数(共1小题)
3.(2022•十堰)袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为2.5×10n,则n= 8 .
【解答】解:∵250000000=2.5×108.
∴n=8,
故答案为:8.
三.科学记数法—表示较小的数(共1小题)
4.(2022•湖北)科学家在实验室中检测出某种病毒的直径约为0.000000103米,该直径用科学记数法表示为 1.03×10﹣7 米.
【解答】解:0.000000103米=1.03×10﹣7米.
故答案为:1.03×10﹣7.
四.算术平方根(共2小题)
5.(2022•恩施州)9的算术平方根是 3 .
【解答】解:∵(±3)2=9,
∴9的算术平方根是3.
故答案为:3.
6.(2022•鄂州)计算:= 2 .
【解答】解:∵22=4,
∴=2.
故答案为:2
五.规律型:数字的变化类(共1小题)
7.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为an,且满足+=.则a4= ,a2022= .
【解答】解:由题意可得:a1=2=,a2==,a3=,
∵+=,
∴2+=7,
∴a4==,
∵=,
∴a5=,
同理可求a6==,•••
∴an=,
∴a2022=,
故答案为:,.
六.规律型:图形的变化类(共1小题)
8.(2022•十堰)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,50节链条总长度为 91 cm.
【解答】解:由题意得:
1节链条的长度=2.8cm,
2节链条的总长度=[2.8+(2.8﹣1)]cm,
3节链条的总长度=[2.8+(2.8﹣1)×2]cm,
...
∴50节链条总长度=[2.8+(2.8﹣1)×49]=91(cm),
故答案为:91.
七.提公因式法与公式法的综合运用(共1小题)
9.(2022•恩施州)因式分解:a3﹣6a2+9a= a(a﹣3)2 .
【解答】解:原式=a(a2﹣6a+9)=a(a﹣3)2,
故答案为:a(a﹣3)2.
八.分式有意义的条件(共1小题)
10.(2022•湖北)若分式有意义,则x的取值范围是 x≠1 .
【解答】解:由题意得:x﹣1≠0,
解得:x≠1,
故答案为:x≠1.
九.分式的加减法(共1小题)
11.(2022•武汉)计算﹣的结果是 .
【解答】解:原式=﹣
=
=
=.
故答案为:.
一十.二次根式的性质与化简(共1小题)
12.(2022•武汉)计算的结果是 2 .
【解答】解:法一、
=|﹣2|
=2;
法二、
=
=2.
故答案为:2.
一十一.二次根式的乘除法(共1小题)
13.(2022•随州)已知m为正整数,若是整数,则根据==3可知m有最小值3×7=21.设n为正整数,若是大于1的整数,则n的最小值为 3 ,最大值为 75 .
【解答】解:∵==10,且为整数,
∴n最小为3,
∵是大于1的整数,
∴越小,越小,则n越大,
当=2时,
=4,
∴n=75,
故答案为:3;75.
一十二.二次根式的混合运算(共1小题)
14.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是 2 .
【解答】解:∵1<<2,
∴1<3﹣<2,
∵若3﹣的整数部分为a,小数部分为b,
∴a=1,b=3﹣﹣1=2﹣,
∴(2+a)•b=(2+)(2﹣)=2,
故答案为:2.
一十三.解二元一次方程组(共1小题)
15.(2022•随州)已知二元一次方程组,则x﹣y的值为 1 .
【解答】解:解法一:由x+2y=4可得:
x=4﹣2y,
代入第二个方程中,可得:
2(4﹣2y)+y=5,
解得:y=1,
将y=1代入第一个方程中,可得
x+2×1=4,
解得:x=2,
∴x﹣y=2﹣1=1,
故答案为:1;
解法二:∵,
由②﹣①可得:
x﹣y=1,
故答案为:1.
一十四.二元一次方程组的应用(共1小题)
16.(2022•湖北)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货 23.5 吨.
【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,
根据题意得:
(1)+(2)得和再除以2得:4x+3y=23.5
故答案为:23.5.
一十五.解一元二次方程-配方法(共1小题)
17.(2022•荆州)一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,则k的值是 1 .
【解答】解:∵x2﹣4x+3=0,
∴x2﹣4x=﹣3,
∴x2﹣4x+4=﹣3+4,
∴(x﹣2)2=1,
∵一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,
∴k=1,
故答案为:1.
一十六.根的判别式(共1小题)
18.(2022•鄂州)若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则+的值为 .
【解答】解:∵实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,
∴a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,
则a+b=4,ab=3,
则原式==,
故答案为:.
一十七.根与系数的关系(共1小题)
19.(2022•湖北)若一元二次方程x2﹣4x+3=0的两个根是x1,x2,则x1•x2的值是 3 .
【解答】解:∵x1,x2是一元二次方程x2﹣4x+3=0的两个根,
∴x1•x2=3,
故答案为:3.
一十八.在数轴上表示不等式的解集(共1小题)
20.(2022•十堰)关于x的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为 0≤x<1 .
【解答】解:该不等式组的解集为:0≤x<1.
故答案为:0≤x<1.
一十九.点的坐标(共1小题)
21.(2022•鄂州)中国象棋文化历史久远.某校开展了以“纵横之间有智慧 攻防转换有乐趣”为主题的中国象棋文化节.如图所示是某次对弈的残局图,如果建立平面直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),那么“兵”在同一坐标系下的坐标是 (﹣3,1) .
【解答】解:根据平面内点的平移规律可得,
把“帅”向左平移两个单位,向上平移3个单位得到“兵”的位置,
∴(﹣1﹣2,﹣2+3),
即(﹣3,1).
故答案为:(﹣3,1).
二十.规律型:点的坐标(共1小题)
22.(2022•荆门)如图,过原点的两条直线分别为l1:y=2x,l2:y=﹣x,过点A(1,0)作x轴的垂线与l1交于点A1,过点A1作y轴的垂线与l2交于点A2,过点A2作x轴的垂线与l1交于点A3,过点A3作y轴的垂线与l2交于点A4,过点A4作x轴的垂线与l1交于点A5,……,依次进行下去,则点A20的坐标为 (1024,﹣1024) .
【解答】解:当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=﹣x=2时,x=﹣2,
∴点A2的坐标为(﹣2,2);
同理可得:A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),A6(﹣8,8),A7(﹣8,﹣16),A8(16,﹣16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(﹣22n+1,22n+1),
A4n+3(﹣22n+1,﹣22n+2),A4n+4(22n+2,﹣22n+2)(n为自然数).
∵20=5×4,
∴错误,应改为:∴点A20的坐标为(22×4+2,﹣22×4+2),即(210,﹣210),
即(1024,﹣1024).
故答案为:(1024,﹣1024).
二十一.动点问题的函数图象(共1小题)
23.(2022•湖北)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为 2+2 .
【解答】解:如图,连接AP,
由图2可得AB=BC=4cm,
∵∠B=36°,AB=BC,
∴∠BAC=∠C=72°,
∵AP平分∠BAC,
∴∠BAP=∠PAC=∠B=36°,
∴AP=BP,∠APC=72°=∠C,
∴AP=AC=BP,
∵∠PAC=∠B,∠C=∠C,
∴△APC∽△BAC,
∴,
∴AP2=AB•PC=4(4﹣AP),
∴AP=2﹣2=BP,(负值舍去),
∴t==2+2,
故答案为:2+2.
二十二.待定系数法求反比例函数解析式(共1小题)
24.(2022•湖北)在反比例函数y=的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4是一个完全平方式,则该反比例函数的解析式为 y= .
【解答】解:∵整式x2﹣kx+4是一个完全平方式,
∴k=±4,
∵反比例函y=的图象的每一支上,y都随x的增大而减小,
∴k﹣1>0,
解得k>1,
∴k=4,
∴反比例函数的解析式为y=.
故答案为:y=.
二十三.二次函数图象与几何变换(共1小题)
25.(2022•荆州)规定;两个函数y1,y2的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数y1=2x+2与y2=﹣2x+2的图象关于y轴对称,则这两个函数互为“Y函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为 y=2x﹣3或y=﹣x2+4x﹣4 .
【解答】解:∵函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,
∴函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的图象与x轴也只有一个交点,
当k=0时,函数解析为y=﹣2x﹣3,它的“Y函数”解析式为y=2x﹣3,它们的图象与x轴只有一个交点,
当k≠0时,此函数是二次函数,
∵它们的图象与x轴都只有一个交点,
∴它们的顶点分别在x轴上,
∴=0,
解得:k=﹣1,
∴原函数的解析式为y=﹣x2﹣4x﹣4=﹣(x+2)2,
∴它的“Y函数”解析式为y=﹣(x﹣2)2=﹣x2+4x﹣4,
综上,“Y函数”的解析式为y=2x﹣3或y=﹣x2+4x﹣4,
故答案为:y=2x﹣3或y=﹣x2+4x﹣4.
二十四.平行线的性质(共2小题)
26.(2022•宜昌)如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方向,则∠ACB的大小是 85° .
【解答】解:过点C作CF∥AD,如图,
∵AD∥BE,
∴AD∥CF∥BE,
∴∠ACF=∠DAC,∠BCF=∠EBC,
∴∠ACB=∠ACF+∠BCF=∠DAC+∠EBC,
由C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方向,得
∠DAC=50°,∠CBE=35°.
∴∠ACB=50°+35°=85°,
故答案为:85°.
27.(2022•湖北)如图,直线a∥b,直线c与直线a,b相交,若∠1=54°,则∠3= 126 度.
【解答】解:∵a∥b,
∴∠4=∠1=54°,
∴∠3=180°﹣∠4=180°﹣54°=126°,
故答案为:126.
二十五.三角形的重心(共1小题)
28.(2022•荆门)如图,点G为△ABC的重心,D,E,F分别为BC,CA,AB的中点,具有性质:AG:GD=BG:GE=CG:GF=2:1.已知△AFG的面积为3,则△ABC的面积为 18 .
【解答】解:∵CG:GF=2:1,△AFG的面积为3,
∴△ACG的面积为6,
∴△ACF的面积为3+6=9,
∵点F为AB的中点,
∴△ACF的面积=△BCF的面积,
∴△ABC的面积为9+9=18,
故答案为:18.
二十六.全等三角形的判定(共1小题)
29.(2022•湖北)如图,已知AB∥DE,AB=DE,请你添加一个条件 ∠A=∠D ,使△ABC≌△DEF.
【解答】解:添加条件:∠A=∠D.
∵AB∥DE,
∴∠B=∠DEC,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
故答案为:∠A=∠D.(答案不唯一)
二十七.直角三角形斜边上的中线(共1小题)
30.(2022•荆州)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若CE=AE=1,则CD= .
【解答】解:如图,连接BE,
∵CE=AE=1,
∴AE=3,AC=4,
而根据作图可知MN为AB的垂直平分线,
∴AE=BE=3,
在Rt△ECB中,BC==2,
∴AB==2,
∵CD为直角三角形ABC斜边上的中线,
∴CD=AB=.
故答案为:.
二十八.勾股定理(共1小题)
31.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是 80 .
【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI于点N,
∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,
∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,
∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,
∴∠CAJ=∠DCM,∠BCJ=∠CFN,
∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),
∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,
∴DM=NF,
∴△DMI≌△FNI(AAS),
∴DI=FI,MI=NI,
∵∠DCF=90°,
∴DI=FI=CI=5,
在Rt△DMI中,由勾股定理可得:
MI===3,
∴NI=MI=3,
∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,
∴AB=AJ+BJ=8+2=10,
∵四边形ABHL为正方形,
∴AL=AB=10,
∵四边形AJKL为矩形,
∴四边形AJKL的面积为:AL•AJ=10×8=80,
故答案为:80.
二十九.勾股数(共1小题)
32.(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是 m2+1 (结果用含m的式子表示).
【解答】解:∵m为正整数,
∴2m为偶数,设其股是a,则弦为a+2,
根据勾股定理得,(2m)2+a2=(a+2)2,
解得a=m2﹣1,
∴弦是a+2=m2﹣1+2=m2+1,
故答案为:m2+1.
三十.平行四边形的性质(共1小题)
33.(2022•荆州)如图,点E,F分别在▱ABCD的边AB,CD的延长线上,连接EF,分别交AD,BC于G,H.添加一个条件使△AEG≌△CFH,这个条件可以是 BE=DF(答案不唯一) .(只需写一种情况)
【解答】解:添加BE=DF.
∵四边形ABCD是平行四边形,
∴AB∥CD,∠A=∠C,AB=CD,
∴∠E=∠F,
∵BE=DF,
∴BE+AB=CD+DF,
即AE=CF,
在△AEG和△CFH中,
,
∴△AEG≌△CFH(ASA).
故答案为:BE=DF(答案不唯一).
三十一.矩形的性质(共1小题)
34.(2022•宜昌)如图,在矩形ABCD中,E是边AD上一点,F,G分别是BE,CE的中点,连接AF,DG,FG,若AF=3,DG=4,FG=5,矩形ABCD的面积为 48 .
【解答】解:∵四边形ABCD是矩形,
∴∠BAE=∠CDE=90°,AD∥BC,
∵F,G分别是BE,CE的中点,AF=3,DG=4,FG=5,
∴BE=2AF=6,CE=2DG=8,BC=2FG=10,
∴BE2+CE2=BC2,
∴△BCE是直角三角形,∠BEC=90°,
∴==24,
∵AD∥BC,
∴S矩形ABCD=2S△BCE=2×24=48,
故答案为:48.
三十二.垂径定理的应用(共1小题)
35.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 7.5 cm(玻璃瓶厚度忽略不计).
【解答】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,
设球的半径为rcm,
由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),
由垂径定理得:AM=DM=AD=6(cm),
在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,
即62+(12﹣r)2=r2,
解得:r=7.5,
即球的半径为7.5cm,
故答案为:7.5.
三十三.圆周角定理(共1小题)
36.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为 120° .
【解答】解:由圆周角定理得:∠AOC=2∠ABC,
∵∠ABC=60°,
∴∠AOC=120°,
故答案为:120°.
三十四.轨迹(共1小题)
37.(2022•宜昌)如图,点A,B,C都在方格纸的格点上,△ABC绕点A顺时针方向旋转90°后得到△AB'C',则点B运动的路径的长为 .
【解答】解:由已知可得,
∠BAB′=90°,AB==5,
∴的长为:=,
故答案为:.
三十五.特殊角的三角函数值(共1小题)
38.(2022•荆门)计算:+cos60°﹣(﹣2022)0= ﹣1 .
【解答】解:+cos60°﹣(﹣2022)0
=﹣+﹣1
=0﹣1
=﹣1,
故答案为:﹣1.
三十六.解直角三角形的应用(共1小题)
39.(2022•武汉)如图,沿AB方向架桥修路,为加快施工进度,在直线AB上湖的另一边的D处同时施工.取∠ABC=150°,BC=1600m,∠BCD=105°,则C,D两点的距离是 800 m.
【解答】解:过点C作CE⊥BD,垂足为E.
∵∠ABC=150°,
∴∠DBC=30°.
在Rt△BCE中,
∵BC=1600m,
∴CE=BC=800m,∠BCE=60°.
∵∠BCD=105°,
∴∠ECD=45°.
在Rt△DCE中,
∵cos∠ECD=,
∴CD=
=
=800(m).
故答案为:800.
三十七.解直角三角形的应用-仰角俯角问题(共1小题)
40.(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 16 m.
(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).
【解答】解:过点D作DE⊥AB于点E,如图.
则BE=CD=6m,∠ADE=45°,∠ACB=58°,
在Rt△ADE中,∠ADE=45°,
设AE=xm,则DE=xm,
∴BC=xm,AB=AE+BE=(6+x)m,
在Rt△ABC中,
tan∠ACB=tan58°=≈1.60,
解得x=10,
∴AB=16m.
故答案为:16.
三十八.众数(共3小题)
41.(2022•荆门)八(1)班一组女生的体重(单位:kg)分别是:35,36,38,40,42,42,45.则这组数据的众数为 42 .
【解答】解:在这一组数据中42出现了2次,次数最多,
故众数是42.
故答案为:42.
42.(2022•鄂州)为了落实“双减”,增强学生体质,阳光学校篮球兴趣小组开展投篮比赛活动.6名选手投中篮圈的个数分别为2,3,3,4,3,5,则这组数据的众数是 3 .
【解答】解:因为这组数据中3出现3次,次数最多,
所以这组数据的众数是3,
故答案为:3.
43.(2022•武汉)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是 25 .
尺码/cm
24
24.5
25
25.5
26
销售量/双
1
3
10
4
2
【解答】解:由表知,这组数据中25出现次数最多,有10次,
所以这组数据的众数为25,
故答案为:25.
三十九.列表法与树状图法(共2小题)
44.(2022•湖北)从2名男生和2名女生中任选2名学生参加志愿者服务,那么选出的2名学生中至少有1名女生的概率是 .
【解答】解:树状图如下所示,
由上可得,一共有12种可能性,其中选出的2名学生中至少有1名女生的可能性有10种,
∴选出的2名学生中至少有1名女生的概率是=,
故答案为:.
45.(2022•湖北)小聪和小明两个同学玩“石头,剪刀、布”的游戏,随机出手一次是平局的概率是 .
【解答】解:小聪和小明玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小聪平局的概率为:=.
故答案为:.
相关试卷
这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题容易题,共16页。
这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题基础题②,共22页。
这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题基础题①,共21页。