|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年重庆市万州区名校中考数学五模试卷含解析
    立即下载
    加入资料篮
    2022年重庆市万州区名校中考数学五模试卷含解析01
    2022年重庆市万州区名校中考数学五模试卷含解析02
    2022年重庆市万州区名校中考数学五模试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年重庆市万州区名校中考数学五模试卷含解析

    展开
    这是一份2022年重庆市万州区名校中考数学五模试卷含解析,共21页。试卷主要包含了下列计算,结果等于a4的是,下列因式分解正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是(  )
    A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
    2.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为(  )

    A.9cm B.13cm C.16cm D.10cm
    3.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为(  )

    A. B. C.1 D.
    4.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(  )

    A.(,) B.(2,) C.(,) D.(,3﹣)
    5.下列计算,结果等于a4的是(  )
    A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2
    6.某运动会颁奖台如图所示,它的主视图是(   )

    A. B. C. D.
    7.下列因式分解正确的是( )
    A. B.
    C. D.
    8.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )
    A. B. C. D.
    9.若kb<0,则一次函数的图象一定经过( )
    A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
    10.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.若式子有意义,则x的取值范围是   .
    12.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.
    13.如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B的动弦,则弦CD的最小值为_____.

    14.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
    15.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.

    16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:






    1′05″33
    1′04″26
    1′04″26
    1′07″29
    s2
    1.1
    1.1
    1.3
    1.6
    如果选拔一名学生去参赛,应派_________去.
    17.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.

    三、解答题(共7小题,满分69分)
    18.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.
    (1)观察猜想:
    图1中,PM与PN的数量关系是   ,位置关系是   .
    (2)探究证明:
    将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;
    (3)拓展延伸:
    把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.

    19.(5分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)

    20.(8分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.

    21.(10分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:
    表1全国森林面积和森林覆盖率
    清查次数

    (1976年)

    (1981年)

    (1988年)

    (1993年)

    (1998年)

    (2003年)

    (2008年)

    (2013年)
    森林面积(万公顷)
    12200
    1150
    12500
    13400
    15894. 09
    17490.92
    19545.22
    20768.73
    森林覆盖率
    12.7%
    12%
    12.98%
    13.92%
    16.55%
    18.21%
    20.36%
    21.63%
    表2北京森林面积和森林覆盖率
    清查次数

    (1976年)

    (1981年)

    (1988年)

    (1993年)

    (1998年)

    (2003年)

    (2008年)

    (2013年)
    森林面积(万公顷)




    33.74
    37.88
    52.05
    58.81
    森林覆盖率
    11.2%
    8.1%
    12.08%
    14.99%
    18.93%
    21.26%
    31.72%
    35.84%
    (以上数据来源于中国林业网)
    请根据以上信息解答下列问题:
    (1)从第   次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
    (2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;

    (3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到   万公顷(用含a和b的式子表示).
    22.(10分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
    (1)求反比例函数的解析式;
    (2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.

    23.(12分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
    接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形的圆心角为   度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
    24.(14分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.
    (1)求y关于x的函数解析式;
    (2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    ∵∠C=90°,
    ∴cosA=,sinA= ,tanA=,cotA=,
    ∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
    ∴只有选项C正确,
    故选C.
    【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
    2、A
    【解析】
    试题分析:由折叠的性质知,CD=DE,BC=BE.
    易求AE及△AED的周长.
    解:由折叠的性质知,CD=DE,BC=BE=7cm.
    ∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.
    △AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).
    故选A.
    点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    3、B
    【解析】
    由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=CD,
    ∵AE∥BD,
    ∴四边形ABDE是平行四边形,
    ∴AB=DE,
    ∴AB=DE=CD,即D为CE中点,
    ∵EF⊥BC,
    ∴∠EFC=90°,
    ∵AB∥CD,
    ∴∠ECF=∠ABC,
    ∴tan∠ECF=tan∠ABC=,
    在Rt△CFE中,EF=,tan∠ECF===,
    ∴CF=,
    根据勾股定理得,CE==,
    ∴AB=CE=,
    故选B.
    【点睛】
    本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键.
    4、A
    【解析】
    解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.

    5、C
    【解析】
    根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.
    【详解】
    A.a+3a=4a,错误;
    B.a5和a不是同类项,不能合并,故此选项错误;
    C.(a2)2=a4,正确;
    D.a8÷a2=a6,错误.
    故选C.
    【点睛】
    本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.
    6、C
    【解析】
    从正面看到的图形如图所示:

    故选C.
    7、C
    【解析】
    依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.
    【详解】
    解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
    选项B,A中的等式不成立;
    选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
    故选C.
    【点睛】
    本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.
    8、D
    【解析】
    先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.
    【详解】
    解:∵点M的坐标是(4,3),
    ∴点M到x轴的距离是3,到y轴的距离是4,
    ∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,
    ∴r的取值范围是3<r<4,
    故选:D.
    【点睛】
    本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.
    9、D
    【解析】
    根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
    【详解】
    ∵kb<0,
    ∴k、b异号。
    ①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;
    ②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;
    综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。
    故选:D
    【点睛】
    此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系
    10、B
    【解析】
    根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.
    【详解】
    已知给出的三角形的各边AB、CB、AC分别为、2、、
    只有选项B的各边为1、、与它的各边对应成比例.故选B.
    【点晴】
    此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.

    二、填空题(共7小题,每小题3分,满分21分)
    11、且
    【解析】
    ∵式子在实数范围内有意义,
    ∴x+1≥0,且x≠0,
    解得:x≥-1且x≠0.
    故答案为x≥-1且x≠0.
    12、-1
    【解析】
    根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.
    【详解】
    解:∵方程3x1-5x+1=0的一个根是a,
    ∴3a1-5a+1=0,
    ∴3a1-5a=-1,
    ∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.
    故答案是:-1.
    【点睛】
    此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
    13、10
    【解析】
    连接OC,当CD⊥OA时CD的值最小,然后根据垂径定理和勾股定理求解即可.
    【详解】
    连接OC,当CD⊥OA时CD的值最小,
    ∵OA=13,AB=1,
    ∴OB=13-1=12,
    ∴BC=,
    ∴CD=5×2=10.
    故答案为10.
    【点睛】
    本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .
    14、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
    【解析】
    让横坐标、纵坐标为负数即可.
    【详解】
    在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
    故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
    15、1
    【解析】
    根据七巧板的性质可得BI=IC=CH=HE,因为S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得点G到EF的距离为 sin45°,根据平行四边形的面积即可求解.
    【详解】
    由七巧板性质可知,BI=IC=CH=HE.
    又∵S△BIC=1,∠BIC=90°,
    ∴BI•IC=1,
    ∴BI=IC=,
    ∴BC==1,
    ∵EF=BC=1,FG=EH=BI=,
    ∴点G到EF的距离为:,
    ∴平行四边形EFGH的面积=EF•
    =1×=1.
    故答案为1
    【点睛】
    本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.
    16、乙
    【解析】
    ∵丁〉甲乙=丙,
    ∴从乙和丙中选择一人参加比赛,
    ∵S 乙2<S 丙2,
    ∴选择乙参赛,
    故答案是:乙.
    17、
    【解析】
    利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.
    【详解】
    当y=0时,有x-=0,
    解得:x=1,
    ∴点B1的坐标为(1,0),
    ∵A1OB1为等边三角形,
    ∴点A1的坐标为(,).
    当y=时.有x-=,
    解得:x=,
    ∴点B2的坐标为(,),
    ∵A2A1B2为等边三角形,
    ∴点A2的坐标为(,).
    同理,可求出点A3的坐标为(,),点A2018的坐标为(,).
    故答案为;.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由见解析(3)
    【解析】
    (1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;
    (2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;
    (3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;
    【详解】
    解:(1)PM=PN,PM⊥PN,理由如下:
    延长AE交BD于O,

    ∵△ACB和△ECD是等腰直角三角形,
    ∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
    在△ACE和△BCD中

    ∴△ACE≌△BCD(SAS),
    ∴AE=BD,∠EAC=∠CBD,
    ∵∠EAC+∠AEC=90°,∠AEC=∠BEO,
    ∴∠CBD+∠BEO=90°,
    ∴∠BOE=90°,即AE⊥BD,
    ∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
    ∴PM=BD,PN=AE,
    ∴PM=PM,
    ∵PM∥BD,PN∥AE,AE⊥BD,
    ∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,
    ∴∠MPA+∠NPC=90°,
    ∴∠MPN=90°,
    即PM⊥PN,
    故答案是:PM=PN,PM⊥PN;
    (2)如图②中,设AE交BC于O,

    ∵△ACB和△ECD是等腰直角三角形,
    ∴AC=BC,EC=CD,
    ∠ACB=∠ECD=90°,
    ∴∠ACB+∠BCE=∠ECD+∠BCE,
    ∴∠ACE=∠BCD,
    ∴△ACE≌△BCD,
    ∴AE=BD,∠CAE=∠CBD,
    又∵∠AOC=∠BOE,
    ∠CAE=∠CBD,
    ∴∠BHO=∠ACO=90°,
    ∵点P、M、N分别为AD、AB、DE的中点,
    ∴PM=BD,PM∥BD,
    PN=AE,PN∥AE,
    ∴PM=PN,
    ∴∠MGE+∠BHA=180°,
    ∴∠MGE=90°,
    ∴∠MPN=90°,
    ∴PM⊥PN;
    (3)由(2)可知△PMN是等腰直角三角形,PM=BD,
    ∴当BD的值最大时,PM的值最大,△PMN的面积最大,
    ∴当B、C、D共线时,BD的最大值=BC+CD=6,
    ∴PM=PN=3,
    ∴△PMN的面积的最大值=×3×3=.
    【点睛】
    本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
    19、10
    【解析】
    试题分析:如图:过点C作CD⊥AB于点D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同样在Rt△BCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.
    试题解析:如图:过点C作CD⊥AB于点D,
    由已知可得:∠ACD=32°,∠BCD =37°,
    在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,
    在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,
    ∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,
    答:小岛到海岸线的距离是10米.

    【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.
    20、.
    【解析】
    试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.
    试题解析:解:画树状图如答图:

    ∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,
    ∴P(A,C两个区域所涂颜色不相同)=.
    考点:1.画树状图或列表法;2.概率.
    21、(1)四;(2)见解析;(3) .
    【解析】
    (1)比较两个折线统计图,找出满足题意的调查次数即可;
    (2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;
    (3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.
    【详解】
    解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
    故答案为四;
    (2)补全折线统计图,如图所示:

    (3)根据题意得:×27.15%=,
    则全国森林面积可以达到万公顷,
    故答案为.
    【点睛】
    此题考查了折线统计图,弄清题中的数据是解本题的关键.
    22、(1) (2)(0,)
    【解析】
    (1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
    (2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.
    【详解】
    (1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,
    ∴|k|=1,
    ∵k>0,
    ∴k=2,
    故反比例函数的解析式为:y=;
    (2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.

    由,解得,或,
    ∴A(1,2),B(4,),
    ∴A′(﹣1,2),最小值 A′B= =,
    设直线 A′B 的解析式为 y=mx+n,
    则 ,解得,
    ∴直线 A′B 的解析式为 y= ,
    ∴x=0 时,y= ,
    ∴P 点坐标为(0,).
    【点睛】
    本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.
    23、 (1) 60,90;(2)见解析;(3) 300人
    【解析】
    (1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
    (2)由(1)可求得了解的人数,继而补全条形统计图;
    (3)利用样本估计总体的方法,即可求得答案.
    【详解】
    解:(1)∵了解很少的有30人,占50%,
    ∴接受问卷调查的学生共有:30÷50%=60(人);
    ∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
    故答案为60,90;
    (2)60﹣15﹣30﹣10=5;
    补全条形统计图得:

    (3)根据题意得:900×=300(人),
    则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
    【点睛】
    本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
    24、(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.
    【解析】
    (1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;
    (2)解不等式求出x的范围,根据一次函数的性质计算即可.
    【详解】
    解:(1)由题意得,0.6x+0.4×(35﹣x)=y,
    整理得,y=0.2x+14(0<x<35);
    (2)由题意得,35﹣x≤2x,
    解得,x≥,
    则x的最小整数为12,
    ∵k=0.2>0,
    ∴y随x的增大而增大,
    ∴当x=12时,y有最小值16.4,
    答:该公司至少需要投入资金16.4万元.
    【点睛】
    本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.

    相关试卷

    重庆市万州区名校2022年中考冲刺卷数学试题含解析: 这是一份重庆市万州区名校2022年中考冲刺卷数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,若分式有意义,则a的取值范围为等内容,欢迎下载使用。

    重庆市万州区达标名校2022年中考数学全真模拟试题含解析: 这是一份重庆市万州区达标名校2022年中考数学全真模拟试题含解析,共19页。试卷主要包含了若分式有意义,则a的取值范围是等内容,欢迎下载使用。

    重庆市万州区达标名校2021-2022学年中考数学猜题卷含解析: 这是一份重庆市万州区达标名校2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,五名女生的体重等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map