终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年浙江省台州市团队六校中考数学对点突破模拟试卷含解析

    立即下载
    加入资料篮
    2022年浙江省台州市团队六校中考数学对点突破模拟试卷含解析第1页
    2022年浙江省台州市团队六校中考数学对点突破模拟试卷含解析第2页
    2022年浙江省台州市团队六校中考数学对点突破模拟试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省台州市团队六校中考数学对点突破模拟试卷含解析

    展开

    这是一份2022年浙江省台州市团队六校中考数学对点突破模拟试卷含解析,共25页。试卷主要包含了下列几何体是棱锥的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.计算(﹣3)﹣(﹣6)的结果等于(  )
    A.3 B.﹣3 C.9 D.18
    2.下列计算正确的是(  )
    A.a2•a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a10
    3.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿 B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )

    A. B. C. D.
    4.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为(  )

    A. B. C. D.
    5.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(  )

    A. B. C. D.
    6.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,,,,则等于  

    A. B. C. D.
    7.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )

    A. B.
    C. D.
    8.下列几何体是棱锥的是( )
    A. B. C. D.
    9.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(  )

    A.(﹣) B.(﹣) C.(﹣) D.(﹣)
    10.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是(  )

    A.()2016 B.()2017 C.()2016 D.()2017
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若分式方程有增根,则m的值为______.
    12.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.

    13.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.

    14.使得关于x的分式方程的解为负整数,且使得关于x的不等式组有且仅有5个整数解的所有k的和为_____.
    15.估计无理数在连续整数___与____之间.
    16.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______
    三、解答题(共8题,共72分)
    17.(8分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
    18.(8分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.

    (1)当点E在BC边上时,画出图形并求出∠BAD的度数;
    (2)当△CDE为等腰三角形时,求∠BAD的度数;
    (3)在点D的运动过程中,求CE的最小值.
    (参考数值:sin75°=, cos75°=,tan75°=)
    19.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)

    20.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?
    21.(8分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.
    (1)求sinB的值;
    (2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.

    22.(10分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=

    (1)求a,k的值及点B的坐标;
    (2)观察图象,请直接写出不等式ax﹣1≥的解集;
    (3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.
    23.(12分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
    学生体能测试成绩各等次人数统计表
    体能等级
    调整前人数
    调整后人数
    优秀
    8
       
    良好
    16
       
    及格
    12
       
    不及格
    4
       
    合计
    40
       
    (1)填写统计表;
    (2)根据调整后数据,补全条形统计图;
    (3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.

    24.如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.

    (1)求该抛物线的解析式;
    (2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;
    (3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    原式=−3+6=3,
    故选A
    2、B
    【解析】
    根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.
    【详解】
    A、a2•a3=a5,错误;
    B、(a2)3=a6,正确;
    C、不是同类项,不能合并,错误;
    D、a5+a5=2a5,错误;
    故选B.
    【点睛】
    本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.
    3、C
    【解析】
    先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.
    【详解】
    由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则
    当0<x≤2,y=x,
    当2<x≤4,y=1,
    由以上分析可知,这个分段函数的图象是C.
    故选C.
    4、D
    【解析】
    解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故选D.

    点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.
    5、B
    【解析】
    试题解析:如图所示:

    设BC=x,
    ∵在Rt△ABC中,∠B=90°,∠A=30°,
    ∴AC=2BC=2x,AB=BC=x,
    根据题意得:AD=BC=x,AE=DE=AB=x,
    作EM⊥AD于M,则AM=AD=x,
    在Rt△AEM中,cos∠EAD=;
    故选B.
    【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.
    6、C
    【解析】
    根据三角形的内角和定理和三角形外角性质进行解答即可.
    【详解】
    如图:

    ,,
    ,,

    =
    =,
    故选C.
    【点睛】
    本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.
    7、D
    【解析】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.
    【详解】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.

    【点睛】
    本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.
    8、D
    【解析】
    分析:根据棱锥的概念判断即可.
    A是三棱柱,错误;
    B是圆柱,错误;
    C是圆锥,错误;
    D是四棱锥,正确.
    故选D.
    点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.
    9、A
    【解析】
    直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
    【详解】
    过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,

    由题意可得:∠C1NO=∠A1MO=90°,
    ∠1=∠2=∠1,
    则△A1OM∽△OC1N,
    ∵OA=5,OC=1,
    ∴OA1=5,A1M=1,
    ∴OM=4,
    ∴设NO=1x,则NC1=4x,OC1=1,
    则(1x)2+(4x)2=9,
    解得:x=±(负数舍去),
    则NO=,NC1=,
    故点C的对应点C1的坐标为:(-,).
    故选A.
    【点睛】
    此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
    10、C
    【解析】
    利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
    解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
    ∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
    ∴D1E1=C1D1sin30°=,则B2C2===()1,
    同理可得:B3C3==()2,
    故正方形AnBnCnDn的边长是:()n﹣1.
    则正方形A2017B2017C2017D2017的边长是:()2.
    故选C.
    “点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
    【详解】
    方程两边都乘(x-1),得
    x-1(x-1)=-m
    ∵原方程增根为x=1,
    ∴把x=1代入整式方程,得m=-1,
    故答案为:-1.
    【点睛】
    本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
    12、或
    【解析】
    过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.
    【详解】
    如图所示,过点A作AG⊥BC,垂足为G,
    ∵AB=AC=6,∠BAC=90°,
    ∴BC==12,
    ∵AB=AC,AG⊥BC,
    ∴AG=BG=CG=6,
    设BD=x,则EC=12-DE-BD=12-5-x=7-x,
    由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,
    ∴DF=x,EF=7-x,
    在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,
    解得:x=3或x=4,
    当BD=3时,DG=3,AD=,
    当BD=4时,DG=2,AD=,
    ∴AD的长为或,
    故答案为:或.

    【点睛】
    本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.
    13、.
    【解析】
    解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
    故答案为.
    【点睛】
    本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
    14、12.1
    【解析】
    依据分式方程=1的解为负整数,即可得到k>,k≠1,再根据不等式组有1个整数解,即可得到0≤k<4,进而得出k的值,从而可得符合题意的所有k的和.
    【详解】
    解分式方程=1,可得x=1-2k,
    ∵分式方程=1的解为负整数,
    ∴1-2k<0,
    ∴k>,
    又∵x≠-1,
    ∴1-2k≠-1,
    ∴k≠1,
    解不等式组,可得,
    ∵不等式组有1个整数解,
    ∴1≤<2,
    解得0≤k<4,
    ∴<k<4且k≠1,
    ∴k的值为1.1或2或2.1或3或3.1,
    ∴符合题意的所有k的和为12.1,
    故答案为12.1.
    【点睛】
    本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况.
    15、3 4
    【解析】
    先找到与11相邻的平方数9和16,求出算术平方根即可解题.
    【详解】
    解:∵,
    ∴,
    ∴无理数在连续整数3与4之间.
    【点睛】
    本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.
    16、
    【解析】
    【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.
    【详解】设反比例函数解析式为y=,
    由题意得:m2=2m×(-1),
    解得:m=-2或m=0(不符题意,舍去),
    所以点A(-2,-2),点B(-4,1),
    所以k=4,
    所以反比例函数解析式为:y=,
    故答案为y=.
    【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.

    三、解答题(共8题,共72分)
    17、-17.1
    【解析】
    按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
    【详解】
    解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
    =﹣8﹣14﹣9÷(﹣2),
    =﹣62+4.1,
    =﹣17.1.
    【点睛】
    此题要注意正确掌握运算顺序以及符号的处理.
    18、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)CE=.
    【解析】
    (1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;
    (2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE时,△DEC是等腰三角形;
    (3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).
    【详解】
    解:(1)如图1中,当点E在BC上时.

    ∵AD=AE,∠DAE=60°,
    ∴△ADE是等边三角形,
    ∴∠ADE=∠AED=60°,
    ∴∠ADB=∠AEC=120°,
    ∵AB=AC,∠BAC=90°,
    ∴∠B=∠C=45°,
    在△ABD和△ACE中,
    ∠B=∠C,∠ADB=∠AEC,AB=AC,
    ∴△BAD≌△CAE,
    ∴∠BAD=∠CAE=(90°-60°)=15°.
    (2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=∠BAC=45°.

    ②如图3中,当CD=CE时,△DEC是等腰三角形.
    ∵AD=AE,
    ∴AC垂直平分线段DE,
    ∴∠ACD=∠ACE=45°,
    ∴∠DCE=90°,
    ∴∠EDC=∠CED=45°,
    ∵∠B=45°,
    ∴∠EDC=∠B,
    ∴DE∥AB,
    ∴∠BAD=∠ADE=60°.

    (3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.

    ∵∠AOE=∠DOE′,∠AE′D=∠AEO,
    ∴△AOE∽△DOE′,
    ∴AO:OD=EO:OE',
    ∴AO:EO=OD:OE',
    ∵∠AOD=∠EOE′,
    ∴△AOD∽△EOE′,
    ∴∠EE′O=∠ADO=60°,
    ∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),
    ∴EC的最小值即为线段CM的长(垂线段最短),
    设E′N=CN=a,则AN=4-a,
    在Rt△ANE′中,tan75°=AN:NE',
    ∴2+=,
    ∴a=2-,
    ∴CE′=CN=2-.
    在Rt△CE′M中,CM=CE′•cos30°=,
    ∴CE的最小值为.
    【点睛】
    本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.
    19、(70﹣10)m.
    【解析】
    过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解得到DF的长度;通过解得到CE的长度,则
    【详解】
    如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.

    则DE=BF=CH=10m,
    在中,∵AF=80m−10m=70m,
    ∴DF=AF=70m.
    在中,∵DE=10m,


    答:障碍物B,C两点间的距离为
    20、规定日期是6天.
    【解析】
    本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.
    【详解】
    解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得

    解方程可得x=6,
    经检验x=6是分式方程的解.
    答:规定日期是6天.
    21、(1)sinB=;(2)DE=1.
    【解析】
    (1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;
    (2)由EF∥AD,BE=2AE,可得,求出EF、DF即可利用勾股定理解决问题;
    【详解】
    (1)在Rt△ABD中,∵BD=DC=9,AD=6,
    ∴AB==3,∴sinB==.
    (2)∵EF∥AD,BE=2AE,∴,∴,∴EF=4,BF=6,
    ∴DF=3,在Rt△DEF中,DE==1.

    考点:1.解直角三角形的应用;2.平行线分线段成比例定理.
    22、(1)a= ,k=3, B(-,-2) (2) ﹣≤x<0或x≥3;(3) (0,)或(0,0)
    【解析】
    1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;
    (2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;
    (3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相 似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.
    【详解】
    解:(1)
    过A作AE⊥x轴,交x轴于点E,
    在Rt△AOE中,OA=,tan∠AOC=,
    设AE=x,则OE=3x,
    根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,
    解得:x=1或x=﹣1(舍去),
    ∴OE=3,AE=1,即A(3,1),
    将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,
    将A坐标代入反比例解析式得:1=,即k=3,
    联立一次函数与反比例解析式得:,
    消去y得: x﹣1=,
    解得:x=﹣或x=3,
    将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);
    (2)由A(3,1),B(﹣,﹣2),
    根据图象得:不等式x﹣1≥的解集为﹣≤x<0或x≥3;
    (3)显然P与O重合时,△PDC∽△ODC;
    当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,
    ∵∠PCD=∠COD=90°,∠PCD=∠CDO,
    ∴△PDC∽△CDO,
    ∵∠PCO+∠CPO=90°,
    ∴∠DCO=∠CPO,
    ∵∠POC=∠COD=90°,
    ∴△PCO∽△CDO,
    ∴=,
    对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,
    ∴C(,0),D(0,﹣1),即OC=,OD=1,
    ∴=,即OP=,
    此时P坐标为(0,),
    综上,满足题意P的坐标为(0,)或(0,0).
    【点睛】
    此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.
    23、(1)12;22;12;4;50;(2)详见解析;(3)1.
    【解析】
    (1)求出各自的人数,补全表格即可;
    (2)根据调整后的数据,补全条形统计图即可;
    (3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
    【详解】
    解:(1)填表如下:
    体能等级
    调整前人数
    调整后人数
    优秀
    8
    12
    良好
    16
    22
    及格
    12
    12
    不及格
    4
    4
    合计
    40
    50
    故答案为12;22;12;4;50;
    (2)补全条形统计图,如图所示:

    (3)抽取的学生中体能测试的优秀率为24%,
    则该校体能测试为“优秀”的人数为1500×24%=1(人).
    【点睛】
    本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.
    24、(1);(2);(3)或.
    【解析】
    (1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
    (2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
    (3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.
    【详解】
    (1)抛物线的图象经过,,,
    把,,代入得:

    解得:,
    抛物线解析式为;
    (2)抛物线改写成顶点式为,
    抛物线对称轴为直线,
    ∴对称轴与轴的交点C的坐标为


    设点B的坐标为,,
    则,


    ∴点B的坐标为,
    设直线解析式为:,
    把,代入得:,
    解得:,
    直线解析式为:.
    (3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
    设⊙P与AB相切于点F,与x轴相切于点C,如图1;

    ∴PF⊥AB,AF=AC,PF=PC,
    ∵AC=1+2=3,BC=4,
    ∴AB==5,AF=3,
    ∴BF=2,
    ∵∠FBP=∠CBA,
    ∠BFP=∠BCA=90,
    ∴△ABC∽△PBF,
    ∴,
    ∴,
    解得:,
    ∴点P的坐标为(2,);
    ②设⊙P与AB相切于点F,与轴相切于点C,如图2:

    ∴PF⊥AB,PF=PC,
    ∵AC=3,BC=4, AB=5,
    ∵∠FBP=∠CBA,
    ∠BFP=∠BCA=90,
    ∴△ABC∽△PBF,
    ∴,
    ∴,
    解得:,
    ∴点P的坐标为(2,-6),
    综上所述,与直线和都相切时,
    或.
    【点睛】
    本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.

    相关试卷

    浙江省台州市团队六校2023-2024学年数学九上期末调研模拟试题含答案:

    这是一份浙江省台州市团队六校2023-2024学年数学九上期末调研模拟试题含答案,共8页。试卷主要包含了抛物线的顶点坐标为,某班7名女生的体重等内容,欢迎下载使用。

    2022-2023学年浙江省台州市团队六校七下数学期末统考模拟试题含答案:

    这是一份2022-2023学年浙江省台州市团队六校七下数学期末统考模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。

    2022年浙江省金华市四校中考数学对点突破模拟试卷含解析:

    这是一份2022年浙江省金华市四校中考数学对点突破模拟试卷含解析,共16页。试卷主要包含了定义运算,方程的根是,如图所示的几何体的俯视图是,下面几何的主视图是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map