终身会员
搜索
    上传资料 赚现金

    安徽六安市叶集区平岗中学2022年中考数学最后冲刺浓缩精华卷含解析

    立即下载
    加入资料篮
    安徽六安市叶集区平岗中学2022年中考数学最后冲刺浓缩精华卷含解析第1页
    安徽六安市叶集区平岗中学2022年中考数学最后冲刺浓缩精华卷含解析第2页
    安徽六安市叶集区平岗中学2022年中考数学最后冲刺浓缩精华卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽六安市叶集区平岗中学2022年中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份安徽六安市叶集区平岗中学2022年中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,点P,下列运算正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为(  )
    A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×107
    2.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为(  )
    A. B. C. D.
    3.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )

    A.(1,1) B.(2,1) C.(2,2) D.(3,1)
    4.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是(  )

    A.10° B.20° C.50° D.70°
    5.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是(  )

    A.S的值增大 B.S的值减小
    C.S的值先增大,后减小 D.S的值不变
    6.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为(  )

    A.2m B. m C.3m D.6m
    7.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )

    A.10 B.14 C.20 D.22
    8.若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )
    A. B. C. D.
    9.下列运算正确的是(  )
    A.(a2)4=a6 B.a2•a3=a6 C. D.
    10.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为(  )

    A.x<2 B.x>2 C.x<5 D.x>5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是_________.
    12.在中,::1:2:3,于点D,若,则______
    13.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为_____.

    14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.

    15.的算术平方根是_______.
    16.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .
    三、解答题(共8题,共72分)
    17.(8分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高 线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命 题会正确吗?
    (1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.
    ①等腰三角形两腰上的中线相等  ;
    ②等腰三角形两底角的角平分线相等  ;
    ③有两条角平分线相等的三角形是等腰三角形  ;
    (2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.
    18.(8分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.

    19.(8分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
    20.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

    请根据以上信息回答:
    (1)本次参加抽样调查的居民有多少人?
    (2)将两幅不完整的图补充完整;
    (3)求扇形统计图中C所对圆心角的度数;
    (4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
    21.(8分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.
    如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
    22.(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
    求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
    23.(12分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
    (1)求双曲线的解析式;
    (2)求点C的坐标,并直接写出y1<y2时x的取值范围.

    24.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:
    今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?
    译文为:
    现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
    请解答上述问题.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将4670000用科学记数法表示为4.67×106,
    故选B.
    【点睛】
    本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.
    2、B
    【解析】
    ∵①对顶角相等,故此选项正确;
    ②若a>b>0,则<,故此选项正确;
    ③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;
    ④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;
    ⑤边长相等的多边形内角不一定都相等,故此选项错误;
    ∴从中任选一个命题是真命题的概率为:.
    故选:B.
    3、B
    【解析】
    直接利用已知点坐标建立平面直角坐标系进而得出答案.
    【详解】
    解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:

    ∴棋子“炮”的坐标为(2,1),
    故答案为:B.
    【点睛】
    本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
    4、B
    【解析】
    要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.
    【详解】
    解:∵要使木条a与b平行,
    ∴∠1=∠2,
    ∴当∠1需变为50 º,
    ∴木条a至少旋转:70º-50º=20º.
    故选B.
    【点睛】
    本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.
    5、D
    【解析】
    作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.
    【详解】
    作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.
    ∵S△POB=|k|,∴S=2k,∴S的值为定值.
    故选D.

    【点睛】
    本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    6、C
    【解析】
    依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.
    【详解】
    解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,
    ∵三根木条要组成三角形,
    ∴x-x<10-2x 解得:.
    故选择C.
    【点睛】
    本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.
    7、B
    【解析】
    直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,DC=AB=6,
    ∵AC+BD=16,
    ∴AO+BO=8,
    ∴△ABO的周长是:1.
    故选B.
    【点睛】
    平行四边形的性质掌握要熟练,找到等值代换即可求解.
    8、D
    【解析】
    ∵一次函数y=ax+b的图象经过第一、二、四象限,
    ∴a<0,b>0,
    ∴a+b不一定大于0,故A错误,
    a−b<0,故B错误,
    ab<0,故C错误,
    <0,故D正确.
    故选D.
    9、C
    【解析】
    根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
    【详解】
    A、原式=a8,所以A选项错误;
    B、原式=a5,所以B选项错误;
    C、原式= ,所以C选项正确;
    D、与不能合并,所以D选项错误.
    故选:C.
    【点睛】
    本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
    10、C
    【解析】
    根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.
    【详解】
    解:∵一次函数y=kx﹣b经过点(2,0),
    ∴2k﹣b=0,b=2k.
    函数值y随x的增大而减小,则k<0;
    解关于k(x﹣3)﹣b>0,
    移项得:kx>3k+b,即kx>1k;
    两边同时除以k,因为k<0,因而解集是x<1.
    故选C.
    【点睛】
    本题考查一次函数与一元一次不等式.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、12
    【解析】
    在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可.
    【详解】
    ∵摸到红球的频率稳定在0.25,

    解得:a=12
    故答案为:12
    【点睛】
    此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率.
    12、2.1
    【解析】
    先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
    【详解】
    解:根据题意,设∠A、∠B、∠C为k、2k、3k,
    则k+2k+3k=180°,
    解得k=30°,
    2k=60°,
    3k=90°,
    ∵AB=10,
    ∴BC=AB=1,
    ∵CD⊥AB,
    ∴∠BCD=∠A=30°,
    ∴BD=BC=2.1.
    故答案为2.1.
    【点睛】
    本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.
    13、
    【解析】
    试题分析:根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出、、、的面积,即可得出答案
    ∵四边形ABCD是矩形,
    ∴AO=CO,BO=DO,DC∥AB,DC=AB,
    ∴,
    ∴,
    ∴,
    ∴,



    考点:矩形的性质;平行四边形的性质
    点评:本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等
    14、(-2,-2)
    【解析】
    先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
    【详解】
    “卒”的坐标为(﹣2,﹣2),

    故答案是:(﹣2,﹣2).
    【点睛】
    考查了坐标确定位置,关键是正确确定原点位置.
    15、3
    【解析】
    根据算术平方根定义,先化简,再求的算术平方根.
    【详解】
    因为=9
    所以的算术平方根是3
    故答案为3
    【点睛】
    此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.
    16、
    【解析】
    试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=.
    考点:概率的计算.

    三、解答题(共8题,共72分)
    17、(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.
    【解析】
    (1)根据命题的真假判断即可;
    (2)根据全等三角形的判定和性质进行证明即可.
    【详解】
    (1)①等腰三角形两腰上的中线相等是真命题;
    ②等腰三角形两底角的角平分线相等是真命题;
    ③有两条角平分线相等的三角形是等腰三角形是真命题;
    故答案为真;真;真;
    (2)逆命题是:有两边上的中线相等的三角形是等腰三角形;
    已知:如图,△ABC中,BD,CE分别是AC,BC边上的中线,且BD=CE,
    求证:△ABC是等腰三角形;
    证明:连接DE,过点D作DF∥EC,交BC的延长线于点F,
    ∵BD,CE分别是AC,BC边上的中线,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,
    ∵DF∥EC,
    ∴四边形DECF是平行四边形,
    ∴EC=DF,
    ∵BD=CE,
    ∴DF=BD,
    ∴∠DBF=∠DFB,
    ∵DF∥EC,
    ∴∠F=∠ECB,
    ∴∠ECB=∠DBC,
    在△DBC与△ECB中

    ∴△DBC≌△ECB,
    ∴EB=DC,
    ∴AB=AC,
    ∴△ABC是等腰三角形.

    【点睛】
    本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知和求证,最后写出证明过程.
    18、(1);(2)P在第二象限,Q在第三象限.
    【解析】
    试题分析:(1)求出点B坐标即可解决问题;
    (2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
    试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.
    (2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
    点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    19、1人
    【解析】
    解:设九年级学生有x人,根据题意,列方程得:
    ,整理得0.8(x+88)=x,解之得x=1.
    经检验x=1是原方程的解.
    答:这个学校九年级学生有1人.
    设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可.
    20、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4).
    【解析】
    试题分析:(1)用B的频数除以B所占的百分比即可求得结论;
    (2)分别求得C的频数及其所占的百分比即可补全统计图;
    (3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;
    (4)列出树形图即可求得结论.
    试题解析:(1)60÷10%=600(人).
    答:本次参加抽样调查的居民有600人.
    (2)如图;

    (3),360°×(1-10%-30%-40%)=72°.
    (4)如图;

    (列表方法略,参照给分).
    P(C粽)=.
    答:他第二个吃到的恰好是C粽的概率是.
    考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.
    21、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
    【解析】
    (1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
    (2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
    (1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
    【详解】
    (1)∵△CDE是等边三角形,
    ∴∠CED=60°,
    ∴∠EDB=60°﹣∠B=10°,
    ∴∠EDB=∠B,
    ∴DE=EB;
    (2) ED=EB, 理由如下:
    取AB的中点O,连接CO、EO,
    ∵∠ACB=90°,∠ABC=10°,
    ∴∠A=60°,OC=OA,
    ∴△ACO为等边三角形,
    ∴CA=CO,
    ∵△CDE是等边三角形,
    ∴∠ACD=∠OCE,
    ∴△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,
    ∴△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB;
    (1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
    ∴∠COE=∠A=60°,
    ∴∠BOE=60°,△COE≌△BOE,
    ∴EC=EB,
    ∴ED=EB,
    ∵EH⊥AB,
    ∴DH=BH=1,
    ∵GE∥AB,
    ∴∠G=180°﹣∠A=120°,
    ∴△CEG≌△DCO,
    ∴CG=OD,
    设CG=a,则AG=5a,OD=a,
    ∴AC=OC=4a,
    ∵OC=OB,
    ∴4a=a+1+1,
    解得,a=2,
    即CG=2.

    22、(1)证明详见解析;(2)证明详见解析;(3)1.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,
    ∴AE=DE,
    在△AFE和△DBE中,

    ∴△AFE≌△DBE(AAS);
    (2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
    ∵AD为BC边上的中线
    ∴DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (3)连接DF,

    ∵AF∥BD,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S菱形ADCF=AC▪DF=×4×5=1.
    【点睛】
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
    23、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
    【解析】
    【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
    (1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
    【详解】(1)∵点A在直线y1=1x﹣1上,
    ∴设A(x,1x﹣1),
    过A作AC⊥OB于C,
    ∵AB⊥OA,且OA=AB,
    ∴OC=BC,
    ∴AC=OB=OC,
    ∴x=1x﹣1,
    x=1,
    ∴A(1,1),
    ∴k=1×1=4,
    ∴;
    (1)∵,解得:,,
    ∴C(﹣1,﹣4),
    由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.

    【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
    24、共有7人,这个物品的价格是53元.
    【解析】
    根据题意,找出等量关系,列出一元一次方程.
    【详解】
    解:设共有x人,这个物品的价格是y元,
    解得
    答:共有7人,这个物品的价格是53元.
    【点睛】
    本题考查了二元一次方程的应用.

    相关试卷

    江苏省扬州市翠岗中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份江苏省扬州市翠岗中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了下列实数中,在2和3之间的是,下列各数中,最小的数是,若正比例函数y=mx,如果,那么等内容,欢迎下载使用。

    安徽六安市叶集区平岗中学2022年中考联考数学试题含解析:

    这是一份安徽六安市叶集区平岗中学2022年中考联考数学试题含解析,共20页。试卷主要包含了如图,已知直线l1,对于反比例函数y=等内容,欢迎下载使用。

    2022届安徽省阜阳市郁文中学中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022届安徽省阜阳市郁文中学中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了比较4,,的大小,正确的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map