|试卷下载
终身会员
搜索
    上传资料 赚现金
    山西省吕梁市2022届高三理数三模试卷及答案
    立即下载
    加入资料篮
    山西省吕梁市2022届高三理数三模试卷及答案01
    山西省吕梁市2022届高三理数三模试卷及答案02
    山西省吕梁市2022届高三理数三模试卷及答案03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省吕梁市2022届高三理数三模试卷及答案

    展开
    这是一份山西省吕梁市2022届高三理数三模试卷及答案,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    山西省吕梁市2022届高三理数三模试卷

    一、单选题

    1已知集合,则(  )

    A B

    C D

    2,则复数在复平面内对应的点为(  )

    A B C D

    3已知向量,且,则实数(  )

    A-1 B C1 D

    4已知双曲线的离心率是它的一条渐近线斜率的2倍,则(  )

    A B C D2

    5,则(  )

    A B0 C1 D

    6《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.如图,若都是直角圆锥底面圆的直径,且,则异面直线所成角的余弦值为(  )

    A B C D

    7将函数图象上的点向右平移个单位长度得到点,若恰好在函数的图像上,则的最小值为(  )

    A B C D

    8的展开式中的系数为35,则正数(  )

    A B2 C D4

    9已知定义在上的函数满足,且在区间上单调递增,则满足的取值范围为(  )

    A B C D

    10某车间加工某种机器的零件数(单位:个)与加工这些零件所花费的时间(单位:min)之间的对应数据如下表所示:

    10

    20

    30

    40

    50

    62

    68

    75

    81

    89

    由表中的数据可得回归直线方程,则加工70个零件比加工60个零件大约多用(  )

    A B C D

    11已知实数满足,给出下列结论:

    .

    则所有正确结论的序号为(  )

    A B C D

    12已知数列满足,记的前项和为的前项和为,则(  )

    A-5409 B-5357 C5409 D5357

    二、填空题

    13满足约束条件的最大值为       .

    14若直线是曲线的一条切线,则实数       .

    15已知抛物线的焦点为,准线为,过点的直线与交于两点(点轴上方),过分别作的垂线,垂足分别为,连接.,则直线的斜率为       .

    16三棱锥的平面展开图如图所示,已知,若三棱锥的四个顶点均在球的表面上,则球的表面积为       .

    三、解答题

    17中;内角的对边分别为,已知.

    1)求A

    2)若,点的中点,求的最大值.

    18如图,在四棱柱中,底面是平行四边形,,侧面是矩形,的中点,.

    1)证明:平面

    2)点在线段上,若,求二面角的余弦值.

    19足球比赛淘汰赛阶段常规比赛时间为90分钟,若在90分钟结束时进球数持平,需进行30分钟的加时赛,若加时赛仍是平局,则采用点球大战的方式决定胜负.“点球大战的规则如下:两队各派5名队员,双方轮流踢点球,累计进球个数多者胜;如果在踢满5轮前,一队的进球数已多于另一队踢满5轮最多可能射中的球数,则不需要再踢(例如:第4轮结束时,双方点球大战的进球数比为20,则不需要再踢第5轮了);若前5点球大战中双方进球数持平,则从第6轮起,双方每轮各派1人罚点球,若均进球或均不进球,则继续下一轮,直到出现一方进球另一方不进球的情况,进球方胜出.

    1)假设踢点球的球员等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也只有的可能性将球扑出,若球员射门均在门内,在一次点球大战中,求门将在前三次扑出点球的个数的分布列和期望:

    2)现有甲、乙两队在半决赛中相遇,常规赛和加时赛后双方战平,需进行点球大战来决定胜负,设甲队每名队员射进点球的概率均为,乙队每名队员射进点球的概率均为,假设每轮点球中进球与否互不影响,各轮结果也互不影响.

    i)若甲队先踢点球,求在第3轮结束时,甲队踢进了3个球(不含常规赛和加时赛进球)并胜出的概率;

    ii)求点球大战在第6轮结束,且乙队以54(不含常规赛和加时赛得分)胜出的概率.

    20已知函数.

    1)求的单调区间;

    2)证明:.

    21已知椭圆的离心率为,且过点.

    1)求椭圆的方程;

    2)点关于原点的对称点为点B,与直线AB平行的直线交于点,直线交于点P,点P是否在定直线上?若在,求出该直线方程;若不在,请说明理由.

    22在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

    1)求的极坐标方程;

    2)设交于两点,若,求的直角坐标方程.

    23已知函数.

    1)当时,求不等式的解集;

    2)当时,,求的取值范围.

    答案解析部分

    1【答案】B

    2【答案】C

    3【答案】A

    4【答案】A

    5【答案】D

    6【答案】C

    7【答案】D

    8【答案】B

    9【答案】B

    10【答案】C

    11【答案】D

    12【答案】B

    13【答案】15

    14【答案】-1

    15【答案】

    16【答案】

    17【答案】1)解:在中,由正弦定理得.

    因为,所以.

    ,所以,所以.

    因为中,,所以.

    2)解:在中,由及余弦定理

    所以,所以,当且仅当时等号成立.

    又点的中点,所以

    所以

    AD的最大值为.

    18【答案】1)证明:因为矩形中,的中点,

    所以

    所以.

    因为

    所以

    所以.

    因为

    所以平面BDM.

    因为平面BDM

    所以,又

    所以平面.

    2)解:由(1)知两两相互垂直,所以以D为原点,所在直线分别为轴建立如图所示的空间直角坐标系.

    因为,令,连接

    所以.

    设平面的一个法向量为

    ,得

    所以,令,得,所以

    由(1)知是平面的一个法向量,

    所以

    故二面角的余弦值为.

    19【答案】1)解:依题意可得,门将每次可以扑出点球的概率为

    门将在前三次扑出点球的个数的可能取值为.

    X的分布列为

    X

    0

    1

    2

    3

    X的数学期望.

    或(易知.

    2)解:(i)记事件甲队先踢点球,在第3轮结束时,甲队踢进了3个球(不含常规赛和加时赛进球)并胜出"为事件A,意味着甲队先踢点球,前三轮点球乙队没进球,甲队前三轮踢进3个点球,对应的概率为

    ii))记点球大战在第6轮结束,且乙队以(不含常规赛和加时赛得分)胜出为事件B,意味着前5轮结束后比分为,第6轮乙队进球甲队没进球,其对应的概率为

    20【答案】1)解:函数,定义域为

    i)当时,单调递增;

    ii)当时,时,单调递减;

    时,单调递增,

    综上,当时,的单调递增区间为,无单调递减区间;

    时,的单调递减区间为,单调递增区间为.

    2)证明:由(1)知,当时,,且

    所以

    因为,所以不等式等价于

    ,则时恒成立,

    所以当时,

    ,所以

    ,即.

    21【答案】1)解:由题意得,解得

    所以椭圆的方程是.

    2)解:点是在定直线上,理由如下,

    由(1)知,设

    ,将的方程与联立消,得

    ,得,且

    因为

    所以直线的方程为,即

    直线的方程为,即

    联立直线与直线的方程,得

    所以

    所以点在定直线.

    22【答案】1)解:因为的参数方程为为参数),所以消去参数可得的直角坐标方程为,即

    ,所以的极坐标方程为.

    2)解:由于交于两点,联立

    两点所对应的极径为,则

    整理得,则

    所以的直角坐标方程为.

    23【答案】1)解:当时,

    时,,解得:

    时,,解得:

    时,,解得:

    综上所述:不等式的解集为.

    2)解:当时,,即

    时,,即恒成立;

    ,解得:

    时,,即恒成立;

    ,不等式组解集为

    综上所述:实数的取值范围为.

    相关试卷

    山西省吕梁市2023届高三理数三模试卷含答案: 这是一份山西省吕梁市2023届高三理数三模试卷含答案,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    山西省2022届高三理数一模试卷及答案: 这是一份山西省2022届高三理数一模试卷及答案,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    山西省临汾市2022届高三理数三模试卷及答案: 这是一份山西省临汾市2022届高三理数三模试卷及答案,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map