![2022年上海市市西初级中学中考数学押题卷含解析第1页](http://m.enxinlong.com/img-preview/2/3/13445182/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年上海市市西初级中学中考数学押题卷含解析第2页](http://m.enxinlong.com/img-preview/2/3/13445182/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年上海市市西初级中学中考数学押题卷含解析第3页](http://m.enxinlong.com/img-preview/2/3/13445182/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年上海市市西初级中学中考数学押题卷含解析
展开
这是一份2022年上海市市西初级中学中考数学押题卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,不等式的最小整数解是,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.﹣23的相反数是( )
A.﹣8 B.8 C.﹣6 D.6
2.如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )
A.-2 B.2 C.-4 D.4
3.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1
4.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为( )
A.2 B.4 C.2 D.4
5.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )
A. B. C. D.
6.不等式的最小整数解是( )
A.-3 B.-2 C.-1 D.2
7.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()
A. B. C. D.
8.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
A.205万 B. C. D.
9.下列计算正确的是( )
A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
10.下列生态环保标志中,是中心对称图形的是( )
A. B. C. D.
11.计算-3-1的结果是( )
A.2 B.-2 C.4 D.-4
12.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( )
A.485×105 B.48.5×106 C.4.85×107 D.0.485×108
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________.
14.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
15.已知关于x的方程有两个不相等的实数根,则m的取值范围是______.
16.计算:×(﹣2)=___________.
17.如图,直线a、b相交于点O,若∠1=30°,则∠2=___
18.化简:=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?
20.(6分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.
(1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.
①求证:△ABP∽△BCP;
②若 PA=3,PC=4,则 PB= .
(2)已知锐角△ABC,分别以 AB、AC 为边向外作正△ABE 和正△ACD,CE 和 BD相交于 P 点.如图(2)
①求∠CPD 的度数;
②求证:P 点为△ABC 的费马点.
21.(6分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0).
(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点.
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
22.(8分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
(2)求证:
(3)若BC=AB,求tan∠CDF的值.
23.(8分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
24.(10分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.
(1)求∠EPF的大小;
(2)若AP=6,求AE+AF的值.
25.(10分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,
(1)求证:△ABE≌△DCF;
(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.
26.(12分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
27.(12分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
(1)A,B 两处粮仓原有存粮各多少吨?
(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
∵=﹣8,﹣8的相反数是8,∴的相反数是8,
故选B.
2、C
【解析】
根据反比例函数k的几何意义,求出k的值即可解决问题
【详解】
解:∵过点P作PQ⊥x轴于点Q,△OPQ的面积为2,
∴||=2,
∵k<0,
∴k=-1.
故选:C.
【点睛】
本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
3、B
【解析】
∵函数y=-2x2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
故选B.
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
4、C
【解析】
根据等腰三角形的性质和勾股定理解答即可.
【详解】
解:∵点A,D分别对应数轴上的实数﹣2,2,
∴AD=4,
∵等腰△ABC的底边BC与底边上的高AD相等,
∴BC=4,
∴CD=2,
在Rt△ACD中,AC=,
故选:C.
【点睛】
此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.
5、B
【解析】
先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.
【详解】
∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,
∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.
故选B.
【点睛】
本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.
6、B
【解析】
先求出不等式的解集,然后从解集中找出最小整数即可.
【详解】
∵,
∴,
∴,
∴不等式的最小整数解是x=-2.
故选B.
【点睛】
本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.
7、D
【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
【详解】
∵四边形ABCD是菱形,
∴CO=AC=3,BO=BD=,AO⊥BO,
∴.
∴.
又∵,
∴BC·AE=24,
即.
故选D.
点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
8、C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值
相关试卷
这是一份2022年上海市杨浦区名校中考数学押题卷含解析,共17页。试卷主要包含了已知抛物线y=ax2﹣等内容,欢迎下载使用。
这是一份2022年上海市市西初级中学中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了的相反数是,“绿水青山就是金山银山”,的倒数是等内容,欢迎下载使用。
这是一份2022年江苏省淮安市实验初级中学中考数学押题卷含解析,共27页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)