2022年四川省成都简阳市三星中学中考数学猜题卷含解析
展开
这是一份2022年四川省成都简阳市三星中学中考数学猜题卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1 B. C. D.
2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )
A.20 B.27 C.35 D.40
3.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为( )
A.30° B.35° C.40° D.50°
4.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为( )
A.9cm B.13cm C.16cm D.10cm
5.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )
A.3:1 B.4:1 C.5:2 D.7:2
6.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
A.-1 B.- C. D.–π
7.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )
A.0.76×104 B.7.6×103 C.7.6×104 D.76×102
8.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).
…
…
…
…
A.只有一个交点 B.有两个交点,且它们分别在轴两侧
C.有两个交点,且它们均在轴同侧 D.无交点
9.下列二次根式中,与是同类二次根式的是( )
A. B. C. D.
10.抛物线y=x2+2x+3的对称轴是( )
A.直线x=1 B.直线x=-1
C.直线x=-2 D.直线x=2
11.已知两点都在反比例函数图象上,当时, ,则的取值范围是( )
A. B. C. D.
12.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于( )
A.2cm B.3cm C.6cm D.7cm
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.方程x-1=的解为:______.
14.计算:()﹣1﹣(5﹣π)0=_____.
15.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.
16.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.
17.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形ABnCnCn-1的面积为________________.
18.如图,点A(3,n)在双曲线y=上,过点A作 AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,后求值:(1﹣)÷(),其中a=1.
20.(6分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.
21.(6分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.
(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.
22.(8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:
成绩x分
人数
频率
25≤x<30
4
0.08
30≤x<35
8
0.16
35≤x<40
a
0.32
40≤x<45
b
c
45≤x<50
10
0.2
(1)求此次抽查了多少名学生的成绩;
(2)通过计算将频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.
23.(8分)试探究:
小张在数学实践活动中,画了一个△ABC,∠ACB=90°,BC=1,AC=2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE= ;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.
拓展延伸:
小张利用图1中的线段AC及点E,构造AE=EF=FC,连接AF,得到图2,试完成以下问题:
(1)求证:△ACF∽△FCE;
(2)求∠A的度数;
(3)求cos∠A的值;
应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长.
24.(10分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
(2)如图,在中,,,为边的中点,于点,交于,求的值
(3)如图,中,,为边的中点,于点,交于,若,,求.
25.(10分)如图,在等边△ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.
26.(12分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:
收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:
平均数
中位数
满分率
46.8
47.5
45%
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为 ;
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数
中位数
满分率
45.3
49
51.2%
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.
27.(12分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.
详解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,
故选:C.
点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
2、B
【解析】
试题解析:第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,
则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.
故选B.
考点:规律型:图形变化类.
3、A
【解析】
根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解
【详解】
∵CC′∥AB,∠CAB=75°,
∴∠C′CA=∠CAB=75°,
又∵C、C′为对应点,点A为旋转中心,
∴AC=AC′,即△ACC′为等腰三角形,
∴∠CAC′=180°﹣2∠C′CA=30°.
故选A.
【点睛】
此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键
4、A
【解析】
试题分析:由折叠的性质知,CD=DE,BC=BE.
易求AE及△AED的周长.
解:由折叠的性质知,CD=DE,BC=BE=7cm.
∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.
△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).
故选A.
点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
5、A
【解析】
利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.
【详解】
连接DO,交AB于点F,
∵D是的中点,
∴DO⊥AB,AF=BF,
∵AB=8,
∴AF=BF=4,
∴FO是△ABC的中位线,AC∥DO,
∵BC为直径,AB=8,AC=6,
∴BC=10,FO=AC=1,
∴DO=5,
∴DF=5-1=2,
∵AC∥DO,
∴△DEF∽△CEA,
∴,
∴==1.
故选:A.
【点睛】
此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.
6、B
【解析】
根据两个负数,绝对值大的反而小比较.
【详解】
解:∵− >−1>− >−π,
∴负数中最大的是−.
故选:B.
【点睛】
本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.
7、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:7600=7.6×103,
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、B
【解析】
根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.
【详解】
解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上
则该二次函数的图像与轴有两个交点,且它们分别在轴两侧
故选B.
【点睛】
本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.
9、C
【解析】
根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.
【详解】
A.|a|与不是同类二次根式;
B.与不是同类二次根式;
C.2与是同类二次根式;
D.与不是同类二次根式.
故选C.
【点睛】
本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
10、B
【解析】
根据抛物线的对称轴公式:计算即可.
【详解】
解:抛物线y=x2+2x+3的对称轴是直线
故选B.
【点睛】
此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.
11、B
【解析】
根据反比例函数的性质判断即可.
【详解】
解:∵当x1<x2<0时,y1<y2,
∴在每个象限y随x的增大而增大,
∴k<0,
故选:B.
【点睛】
本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.
12、D
【解析】
【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.
【详解】因为,AB=10cm,BC=4cm,
所以,AC=AB-BC=10-4=6(cm)
因为,点D是线段AC的中点,
所以,CD=3cm,
所以,BD=BC+CD=3+4=7(cm)
故选D
【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
两边平方解答即可.
【详解】
原方程可化为:(x-1)2=1-x,
解得:x1=0,x2=1,
经检验,x=0不是原方程的解,
x=1是原方程的解
故答案为 .
【点睛】
此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.
14、1
【解析】
分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题
【详解】
解:原式=2﹣1
=1,
故答案为1.
【点睛】
此题考查负整数指数幂,0指数幂的化简,难度不大
15、3
【解析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x,
故阴影部分的面积为πx2×=×πx2=2π,
故解得:x1=3,x2=-3(不合题意,舍去),
故答案为3.
【点睛】
本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.
16、
【解析】
连接AC、CF,GE,根据菱形性质求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:如图,连接AC、CF、GE,CF和GE相交于O点
∵在菱形ABCD中, ,BC=1,
∴,AC=1,
∴
∵在菱形CEFG中,是它的对角线,
∴,
∴,
∴
∵==,
∴在,
又∵H是AF的中点
∴.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.
17、或
【解析】
试题分析:AC===,因为矩形都相似,且每相邻两个矩形的相似比=,∴=2×1=2,=,===,
...,==...===.
故答案为.
考点:1.相似多边形的性质;2.勾股定理;3.规律型;4.矩形的性质;5.综合题.
18、2.
【解析】
先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.
【详解】
由点A(3,n)在双曲线y=上得,n=2.∴A(3,2).
∵线段OA的垂直平分线交OC于点B,∴OB=AB.
则在△ABC中, AC=2,AB+BC=OB+BC=OC=3,
∴△ABC周长的值是2.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、,2.
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
【详解】
解:原式=
,
当a=1时,
原式==2.
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
20、见解析.
【解析】
(1)画出⊙O的两条直径,交点即为圆心O.
(2)作直线AO交⊙O于F,直线BF即为所求.
【详解】
解:作图如下:
(1);
(2).
【点睛】
本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21、(1)(m,2m﹣2);(2)S△ABC =﹣;(3)m的值为或10+2.
【解析】
分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;
(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标为(m+2,1a+2m−2),设BD=t,则点C的坐标为(m+2+t,1a+2m−2−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;
(3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.
详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,
∴抛物线的顶点坐标为(m,2m﹣2),
故答案为(m,2m﹣2);
(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,
∵AB∥x轴,且AB=1,
∴点B的坐标为(m+2,1a+2m﹣2),
∵∠ABC=132°,
∴设BD=t,则CD=t,
∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),
∵点C在抛物线y=a(x﹣m)2+2m﹣2上,
∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,
整理,得:at2+(1a+1)t=0,
解得:t1=0(舍去),t2=﹣,
∴S△ABC=AB•CD=﹣;
(3)∵△ABC的面积为2,
∴﹣=2,
解得:a=﹣,
∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣2.
分三种情况考虑:
①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
整理,得:m2﹣11m+39=0,
解得:m1=7﹣(舍去),m2=7+(舍去);
②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=;
③当m<2m﹣2,即m>2时,有﹣(2m﹣2﹣m)2+2m﹣2=2,
整理,得:m2﹣20m+60=0,
解得:m3=10﹣2(舍去),m1=10+2.
综上所述:m的值为或10+2.
点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤2及m>2三种情况考虑.
22、(1)50;(2)详见解析;(3)220.
【解析】
(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;
(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;
(3)先得到成绩优秀的频率,再乘以500即可求解.
【详解】
解:(1)4÷0.08=50(名).
答:此次抽查了50名学生的成绩;
(2)a=50×0.32=16(名),
b=50﹣4﹣8﹣16﹣10=12(名),
c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,
如图所示:
(3)500×(0.24+0.2)
=500×0.44
=220(名).
答:本次测试九年级学生中成绩优秀的人数是220名.
【点睛】
本题主要考查数据的收集、 处理以及统计图表。
23、(1)小张的发现正确;(2)详见解析;(3)∠A=36°;(4)
【解析】
尝试探究:根据勾股定理计算即可;
拓展延伸:(1)由AE2=AC•EC,推出 ,又AE=FC,推出 ,即可解问题;
(2)利用相似三角形的性质即可解决问题;
(3)如图,过点F作FM⊥AC交AC于点M,根据cos∠A= ,求出AM、AF即可;
应用迁移:利用(3)中结论即可解决问题;
【详解】
解:尝试探究:﹣1;
∵∠ACB=90°,BC=1,AC=2,
∴AB=,
∴AD=AE=,
∵AE2=()2=6﹣2,
AC•EC=2×[2﹣()]=6﹣ ,
∴AE2=AC•EC,
∴小张的发现正确;
拓展延伸:
(1)∵AE2=AC•EC,
∴
∵AE=FC,
∴,
又∵∠C=∠C,
∴△ACF∽△FCE;
(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,
又∵EF=FC,
∴∠C=∠CEF,
∴∠AFC=∠C,
∴AC=AF,
∵AE=EF,
∴∠A=∠AFE,
∴∠FEC=2∠A,
∵EF=FC,
∴∠C=2∠A,
∵∠AFC=∠C=2∠A,
∵∠AFC+∠C+∠A=180°,
∴∠A=36°;
(3)如图,过点F作FM⊥AC交AC于点M,
由尝试探究可知AE= ,
EC=,
∵EF=FC,由(2)得:AC=AF=2,
∴ME= ,
∴AM= ,
∴cos∠A= ;
应用迁移:
∵正十边形的中心角等于 =36°,且是半径为2的圆内接正十边形,
∴如图,当点A是圆内接正十边形的圆心,AC和AF都是圆的半径,FC是正十边形的边长时,
设AF=AC=2,FC=EF=AE=x,
∵△ACF∽△FCE,
∴ ,
∴ ,
∴ ,
∴半径为2的圆内接正十边形的边长为.
【点睛】
本题考查相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用数形结合的思想思考问题,属于中考压轴题.
24、 (1)相等,理由见解析;(2)2;(3).
【解析】
(1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
(2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
(3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
【详解】
解:(1)BF=AE,理由:
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,
∴△ABF≌△DAE,
∴BF=AE,
(2) 如图2,
过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,
∴四边形ABCM是平行四边形,
∵∠ABC=90°,
∴▱ABCM是矩形,
∵AB=BC,
∴矩形ABCM是正方形,
∴AB=BC=CM,
同(1)的方法得,△ABD≌△BCG,
∴CG=BD,
∵点D是BC中点,
∴BD=BC=CM,
∴CG=CM=AB,
∵AB∥CM,
∴△AFB∽△CFG,
∴
(3) 如图3,
在Rt△ABC中,AB=3,BC=4,
∴AC=5,
∵点D是BC中点,
∴BD=BC=2,
过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
∴四边形ABCN是平行四边形,
∵∠ABC=90°,∴▱ABCN是矩形,
同(1)的方法得,∠BAD=∠CBP,
∵∠ABD=∠BCP=90°,
∴△ABD∽△BCP,
∴
∴
∴CP=
同(2)的方法,△CFP∽△AFB,
∴
∴
∴CF=.
【点睛】
本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
25、见解析
【解析】
试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.
试题解析:∵△ABC是等边三角形,
∴AC=BC,∠B=∠ACB=60°,
∵线段CD绕点C顺时针旋转60°得到CE,
∴CD=CE,∠DCE=60°,
∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,
∴∠BCD=∠ACE,
在△BCD与△ACE中,
,
∴△BCD≌△ACE,
∴∠EAC=∠B=60°,
∴∠EAC=∠ACB,
∴AE∥BC.
26、(1)补充表格见解析;(2)①61;②见解析.
【解析】
(1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可.
【详解】
(1)补充表格如下:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
1
0
3
2
7
3
4
(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,
故答案为:61;
②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;
从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;
建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.
【点睛】
本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
27、(1)(2)作图见解析;(3).
【解析】
(1)利用平移的性质画图,即对应点都移动相同的距离.
(2)利用旋转的性质画图,对应点都旋转相同的角度.
(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
【详解】
解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.
(3)∵,
∴点B所走的路径总长=.
考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
相关试卷
这是一份四川省成都简阳市三星中学2023-2024学年数学九上期末检测模拟试题含答案,共8页。试卷主要包含了解方程,选择最适当的方法是,如果,那么代数式的值是.,方程 x2=4的解是等内容,欢迎下载使用。
这是一份四川省简阳市2021-2022学年中考猜题数学试卷含解析,共17页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份四川省成都简阳市三星中学2022年中考数学最后一模试卷含解析,共16页。试卷主要包含了答题时请按要求用笔,下列图标中,是中心对称图形的是,计算4+,某一公司共有51名员工等内容,欢迎下载使用。