2022年山西省太原市名校中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )
A.2011﹣2014年最高温度呈上升趋势
B.2014年出现了这6年的最高温度
C.2011﹣2015年的温差成下降趋势
D.2016年的温差最大
2.不等式5+2x <1的解集在数轴上表示正确的是( ).
A. B. C. D.
3.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )
A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-2
4.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )
A. B. C. D.
5.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
A.60° B.120° C.60°或120° D.30°或120°
6.若关于x的方程=3的解为正数,则m的取值范围是( )
A.m< B.m<且m≠
C.m>﹣ D.m>﹣且m≠﹣
7.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是( )
A. B. C. D.
8.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )
A.15 B.17 C.19 D.24
9.若是关于x的方程的一个根,则方程的另一个根是( )
A.9 B.4 C.4 D.3
10.估算的值是在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一个多边形的内角和是,则它是______边形.
12.若x=-1, 则x2+2x+1=__________.
13.二次函数中的自变量与函数值的部分对应值如下表:
…
…
…
…
则的解为________.
14.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)
15.比较大小:3_________ (填<,>或=).
16.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).
三、解答题(共8题,共72分)
17.(8分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.
18.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.
19.(8分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
①当∠DAE= 时,四边形ADFP是菱形;
②当∠DAE= 时,四边形BFDP是正方形.
20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.
(1)求证:AC平分∠DAB;
(2)若BE=3,CE=3,求图中阴影部分的面积.
21.(8分)如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.
(1)求k的值;
(2)求tan∠DAC的值及直线AC的解析式;
(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.
22.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。
23.(12分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.
(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.
(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.
24.灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
请根据图中提供的信息,回答下列问题:
(1)a= %,并补全条形图.
(2)在本次抽样调查中,众数和中位数分别是多少?
(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.
【详解】
A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.
【点睛】
考查了折线统计图,利用折线统计图获取正确信息是解题关键.
2、C
【解析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
【详解】
5+1x<1,
移项得1x<-4,
系数化为1得x<-1.
故选C.
【点睛】
本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
3、D
【解析】
把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.
【详解】
解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).
由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.
∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.
4、C
【解析】
根据各点在数轴上位置即可得出结论.
【详解】
由图可知,b A. ∵b B. ∵b0,故本选项错误;
C. ∵bb,故本选项正确;
D. ∵b 故选C.
5、C
【解析】
根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
【详解】
如图所示,
∵OD⊥AB,
∴D为AB的中点,即AD=BD=,
在Rt△AOD中,OA=5,AD=,
∴sin∠AOD=,
又∵∠AOD为锐角,
∴∠AOD=60°,
∴∠AOB=120°,
∴∠ACB=∠AOB=60°,
又∵圆内接四边形AEBC对角互补,
∴∠AEB=120°,
则此弦所对的圆周角为60°或120°.
故选C.
【点睛】
此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
6、B
【解析】
解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,解得:x=,
已知关于x的方程=3的解为正数,
所以﹣2m+9>0,解得m<,
当x=3时,x==3,解得:m=,
所以m的取值范围是:m<且m≠.
故答案选B.
7、D
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
【详解】
∵CD是AB边上的中线,
∴CD=AD,
∴∠A=∠ACD,
∵∠ACB=90°,BC=6,AC=8,
∴tan∠A=,
∴tan∠ACD的值.
故选D.
【点睛】
本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
8、D
【解析】
由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.
【详解】
解:解:∵第①个图案有三角形1个,
第②图案有三角形1+3=4个,
第③个图案有三角形1+3+4=8个,
…
∴第n个图案有三角形4(n﹣1)个(n>1时),
则第⑦个图中三角形的个数是4×(7﹣1)=24个,
故选D.
【点睛】
本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.
9、D
【解析】
解:设方程的另一个根为a,由一元二次方程根与系数的故选可得,
解得a=,
故选D.
10、C
【解析】
求出<<,推出4<<5,即可得出答案.
【详解】
∵<<,
∴4<<5,
∴的值是在4和5之间.
故选:C.
【点睛】
本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、六
【解析】
试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是六,故答案为六.
考点:多边形内角与外角.
12、2
【解析】
先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.
【详解】
∵x=-1,
∴x2+2x+1=(x+1)2=(-1+1)2=2,
故答案为:2.
【点睛】
本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
13、或
【解析】
由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.
【详解】
解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),
∴此抛物线的对称轴为:直线x=-,
∵此抛物线过点(1,0),
∴此抛物线与x轴的另一个交点为:(-2,0),
∴ax2+bx+c=0的解为:x=-2或1.
故答案为x=-2或1.
【点睛】
此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.
14、甲
【解析】
由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,
则S2甲
15、<
【解析】
【分析】根据实数大小比较的方法进行比较即可得答案.
【详解】∵32=9,9<10,
∴3<,
故答案为:<.
【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.
16、9π
【解析】
根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC=AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.
【详解】
∵∠C是直角,∠ABC=60°,
∴∠BAC=90°﹣60°=30°,
∴BC=AB=×6=3(cm),
∵△ABC以点B为中心顺时针旋转得到△BDE,
∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,
∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC
=S扇形ABE﹣S扇形BCD
=﹣
=11π﹣3π
=9π(cm1).
故答案为9π.
【点睛】
本题考查了旋转的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键.
三、解答题(共8题,共72分)
17、(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.
【解析】
:(1)原来一天可获利:20×100=2000元;
(2)①y=(20-x)(100+10x)=-10(x2-10x-200),
由-10(x2-10x-200)=2160,
解得:x1=2,x2=8,
∴每件商品应降价2或8元;
②观察图像可得
18、原式==﹣2.
【解析】
分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.
详解:原式=
=
=,
当a=﹣1时,
原式==﹣2.
点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
19、(1)详见解析;(2)①67.5°;②90°.
【解析】
(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
②根据四边形BFDP是正方形,可以求得∠DAE的度数.
【详解】
(1)证明:连接OD,如图所示,
∵射线DC切⊙O于点D,
∴OD⊥CD,
即∠ODF=90°,
∵∠AED=45°,
∴∠AOD=2∠AED=90°,
∴∠ODF=∠AOD,
∴CD∥AB;
(2)①连接AF与DP交于点G,如图所示,
∵四边形ADFP是菱形,∠AED=45°,OA=OD,
∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
∴∠AGE=90°,∠DAO=45°,
∴∠EAG=45°,∠DAG=∠PEG=22.5°,
∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
故答案为:67.5°;
②∵四边形BFDP是正方形,
∴BF=FD=DP=PB,
∠DPB=∠PBF=∠BFD=∠FDP=90°,
∴此时点P与点O重合,
∴此时DE是直径,
∴∠EAD=90°,
故答案为:90°.
【点睛】
本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
20、(1)证明见解析;(2)
【解析】
(1)连接OC,如图,利用切线的性质得CO⊥CD,则AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,从而得到∠DAC=∠CAO;
(2)设⊙O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出∠COE=60°,然后根据扇形的面积公式,利用S阴影=S△COE﹣S扇形COB进行计算即可.
【详解】
解:(1)连接OC,如图,
∵CD与⊙O相切于点E,
∴CO⊥CD,
∵AD⊥CD,
∴AD∥CO,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)设⊙O半径为r,
在Rt△OEC中,∵OE2+EC2=OC2,
∴r2+27=(r+3)2,解得r=3,
∴OC=3,OE=6,
∴cos∠COE=,
∴∠COE=60°,
∴S阴影=S△COE﹣S扇形COB=•3•3﹣.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
21、(1);(2),;(3)
【解析】
试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;
(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;
(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△CMN=•t•(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<2),最后根据二次函数的最值问题求解.
试题解析:(1)把A(2,1)代入y=,得k=2×1=2;
(2)作BH⊥AD于H,如图1,
把B(1,a)代入反比例函数解析式y=,得a=2,
∴B点坐标为(1,2),
∴AH=2﹣1,BH=2﹣1,
∴△ABH为等腰直角三角形,∴∠BAH=45°,
∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,
∴tan∠DAC=tan30°=;
∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,
∴CD=2,∴OC=1,
∴C点坐标为(0,﹣1),
设直线AC的解析式为y=kx+b,
把A(2,1)、C(0,﹣1)代入得 ,解得 ,
∴直线AC的解析式为y=x﹣1;
(3)设M点坐标为(t,)(0<t<2),
∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t, t﹣1),
∴MN=﹣(t﹣1)=﹣t+1,
∴S△CMN=•t•(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),
∵a=﹣<0,∴当t=时,S有最大值,最大值为.
22、(1)详见解析;(2)详见解析
【解析】
(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,再根据全等三角形的性质和等量关系即可求解;
(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE,
∵点E为AD的中点,
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∵AF=BD,
∴CD=BD,
∴D是BC的中点;
(2)若AB=AC,则四边形AFBD是矩形.理由如下:
∵△AEF≌△DEC,
∴AF=CD,
∵AF=BD,
∴CD=BD;
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴平行四边形AFBD是矩形.
【点睛】
本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.
23、(1)60,30;;(2)300;(3)
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;
(2)利用样本估计总体的方法,即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∵了解部分的人数为60﹣(15+30+10)=5,
∴扇形统计图中“了解”部分所对应扇形的圆心角为:×360°=30°;
故答案为60,30;
(2)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,
故答案为300;
(3)画树状图如下:
所有等可能的情况有6种,其中抽到女生A的情况有2种,
所以P(抽到女生A)==.
【点睛】
此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
24、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.
【解析】
(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;
(2)根据众数和中位数的定义即可求出答案;
(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.
【详解】
解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,
该扇形所对圆心角的度数为310°×10%=31°,
参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:
故答案为10;
(2)抽样调查中总人数为100人,
结合条形统计图可得:众数是5,中位数是1.
(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),
活动时间不少于1天的学生人数大约有5400人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2023年山西省太原市小店区部分学校中考数学模拟试卷(三)(含解析): 这是一份2023年山西省太原市小店区部分学校中考数学模拟试卷(三)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山西省晋城市重点达标名校2021-2022学年中考数学模拟试题含解析: 这是一份山西省晋城市重点达标名校2021-2022学年中考数学模拟试题含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,不等式3x<2,计算的结果是,下面几何的主视图是等内容,欢迎下载使用。
2022年山西省壶关县市级名校中考数学模拟预测试卷含解析: 这是一份2022年山西省壶关县市级名校中考数学模拟预测试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,如图所示的几何体的俯视图是,若分式方程无解,则a的值为,的相反数是等内容,欢迎下载使用。