|试卷下载
搜索
    上传资料 赚现金
    2022年四川省成都市七中中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022年四川省成都市七中中考适应性考试数学试题含解析01
    2022年四川省成都市七中中考适应性考试数学试题含解析02
    2022年四川省成都市七中中考适应性考试数学试题含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省成都市七中中考适应性考试数学试题含解析

    展开
    这是一份2022年四川省成都市七中中考适应性考试数学试题含解析,共17页。

    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(共10小题,每小题3分,共30分)
    1.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
    A.5,5B.5,6C.6,5D.6,6
    2.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
    A.B.C.D.
    3.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    4.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为( )
    A.70°B.65°C.62°D.60°
    5.将(x+3)2﹣(x﹣1)2分解因式的结果是( )
    A.4(2x+2)B.8x+8C.8(x+1)D. 4(x+1)
    6.如图,AB是⊙O的直径,AB=8,弦CD垂直平分OB,E是弧AD上的动点,AF⊥CE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为( )
    A.4π+3B.4π+C.π+D.π+3
    7.方程2x2﹣x﹣3=0的两个根为( )
    A.x1=,x2=﹣1B.x1=﹣,x2=1C.x1=,x2=﹣3D.x1=﹣,x2=3
    8.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
    A.3cmB. cmC.2.5cmD. cm
    9.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是( )
    A.y=﹣2x2+1B.y=﹣2x2﹣1C.y=﹣2(x+1)2D.y=﹣2(x﹣1)2
    10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:
    ①年用水量不超过180m1的该市居民家庭按第一档水价交费;
    ②年用水量不超过240m1的该市居民家庭按第三档水价交费;
    ③该市居民家庭年用水量的中位数在150~180m1之间;
    ④该市居民家庭年用水量的众数约为110m1.
    其中合理的是( )
    A.①③B.①④C.②③D.②④
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:
    根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.
    12.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
    13.2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_____.
    14.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 .
    15.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.
    16.分解因式8x2y﹣2y=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
    (1)在图(1)中画出一个等腰△ABE,使其面积为3.5;
    (2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.
    18.(8分)如图,在△ABC中,
    (1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).
    (2)在(1)条件下,求证:AB2=BD•BC.
    19.(8分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)求点A,点B的坐标;
    (2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.
    20.(8分)先化简再求值:÷(a﹣),其中a=2cs30°+1,b=tan45°.
    21.(8分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.
    (1)计算:若十字框的中间数为17,则a+b+c+d=______.
    (2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;
    (3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;
    (4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.
    22.(10分)解方程组:
    23.(12分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:
    (I)本次随机抽样调查的学生人数为 ,图①中的m的值为 ;
    (II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
    (III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
    24.解方程:x2-4x-5=0
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
    平均数为:×(6+3+4+1+7)=1,
    按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
    故选A.
    考点:中位数;算术平均数.
    2、D
    【解析】
    延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
    【详解】
    解:延长BO交⊙O于D,连接CD,
    则∠BCD=90°,∠D=∠A=60°,
    ∴∠CBD=30°,
    ∵BD=2R,
    ∴DC=R,
    ∴BC=R,
    故选D.
    【点睛】
    此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
    3、C
    【解析】
    根据轴对称图形和中心对称图形的定义进行分析即可.
    【详解】
    A、不是轴对称图形,也不是中心对称图形.故此选项错误;
    B、不是轴对称图形,也不是中心对称图形.故此选项错误;
    C、是轴对称图形,也是中心对称图形.故此选项正确;
    D、是轴对称图形,但不是中心对称图形.故此选项错误.
    故选C.
    【点睛】
    考点:1、中心对称图形;2、轴对称图形
    4、A
    【解析】
    由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
    【详解】
    ∵AB∥CD,∠C=35°,
    ∴∠ABC=∠C=35°,
    ∵BC平分∠ABE,
    ∴∠ABE=2∠ABC=70°,
    ∵AB∥CD,
    ∴∠BED=∠ABE=70°.
    故选:A.
    【点睛】
    本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
    5、C
    【解析】
    直接利用平方差公式分解因式即可.
    【详解】
    (x+3)2−(x−1)2=[(x+3)+(x−1)][(x+3)−(x−1)]=4(2x+2)=8(x+1).
    故选C.
    【点睛】
    此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.
    6、A
    【解析】
    连AC,OC,BC.线段CF扫过的面积=扇形MAH的面积+△MCH的面积,从而证明即可解决问题.
    【详解】
    如下图,连AC,OC,BC,设CD交AB于H,
    ∵CD垂直平分线段OB,
    ∴CO=CB,
    ∵OC=OB,
    ∴OC=OB=BC,
    ∴,
    ∵AB是直径,
    ∴,
    ∴,
    ∵,
    ∴点F在以AC为直径的⊙M上运动,当E从A运动到D时,点F从A运动到H,连接MH,
    ∵MA=MH,

    ∴,
    ∵,
    ∴CF扫过的面积为,
    故选:A.
    【点睛】
    本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.
    7、A
    【解析】
    利用因式分解法解方程即可.
    【详解】
    解:(2x-3)(x+1)=0,
    2x-3=0或x+1=0,
    所以x1=,x2=-1.
    故选A.
    【点睛】
    本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
    8、D
    【解析】
    分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
    详解:连接OB,
    ∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.
    在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
    解得:OE=3,
    ∴OB=3+2=5,
    ∴EC=5+3=1.
    在Rt△EBC中,BC=.
    ∵OF⊥BC,
    ∴∠OFC=∠CEB=90°.
    ∵∠C=∠C,
    ∴△OFC∽△BEC,
    ∴,即,
    解得:OF=.
    故选D.
    点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.
    9、A
    【解析】
    根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.
    故选A.
    【点睛】
    本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
    10、B
    【解析】
    利用条形统计图结合中位数和中位数的定义分别分析得出答案.
    【详解】
    ①由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),
    ×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;
    ②∵年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),
    ∴×100%=7%≠5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;
    ③∵5万个数据的中间是第25000和25001的平均数,
    ∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;
    ④该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,
    故选B.
    【点睛】
    此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、甲
    【解析】
    首先比较平均数,平均数相同时选择方差较小的运动员参加.
    【详解】
    ∵ ,
    ∴从甲和丙中选择一人参加比赛,
    ∵ ,
    ∴选择甲参赛,
    故答案为甲.
    【点睛】
    此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    12、5
    【解析】
    ∵多边形的每个外角都等于72°,
    ∵多边形的外角和为360°,
    ∴360°÷72°=5,
    ∴这个多边形的边数为5.
    故答案为5.
    13、
    【解析】
    首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果,最后用概率公式求解即可求得答案.
    【详解】
    树状图如图所示,
    ∴一共有9种等可能的结果;
    根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,
    ∴选择同一种交通工具前往观看演出的概率:,
    故答案为.
    【点睛】
    此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
    14、50°.
    【解析】
    根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:
    【详解】
    ∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.
    ∵∠DBC=15°,∴∠ABC=∠A+15°.
    ∵AB=AC,∴∠C=∠ABC=∠A+15°.
    ∴∠A+∠A+15°+∠A+15°=180°,
    解得∠A=50°.
    故答案为50°.
    15、5
    【解析】
    由题意得, ,.
    ∴原式
    16、2y(2x+1)(2x﹣1)
    【解析】
    首先提取公因式2y,再利用平方差公式分解因式得出答案.
    【详解】
    8x2y-2y=2y(4x2-1)
    =2y(2x+1)(2x-1).
    故答案为2y(2x+1)(2x-1).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    三、解答题(共8题,共72分)
    17、 (1)见解析;(2)DF=
    【解析】
    (1)直接利用等腰三角形的定义结合勾股定理得出答案;
    (2)利用直角三角的定义结合勾股定理得出符合题意的答案.
    【详解】
    (1)如图(1)所示:△ABE,即为所求;
    (2)如图(2)所示:△CDF即为所求,DF=.
    【点睛】
    此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.
    18、(1)作图见解析;(2)证明见解析;
    【解析】
    (1)①以C为圆心,任意长为半径画弧,交CB、CA于E、F;②以A为圆心,CE长为半径画弧,交AB于G;③以G为圆心,EF长为半径画弧,两弧交于H;④连接AH并延长交BC于D,则∠BAD=∠C;(2)证明△ABD∽△CBA,然后根据相似三角形的性质得到结论.
    【详解】
    (1)如图,∠BAD为所作;
    (2)∵∠BAD=∠C,∠B=∠B
    ∴△ABD∽△CBA,
    ∴AB:BC=BD:AB,
    ∴AB2=BD•BC.
    【点睛】
    本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线).也考查了相似三角形的判定与性质.
    19、 (1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.
    【解析】
    (1)令y=0,得到关于x 的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;
    (2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.
    【详解】
    (1)解:设y=0,则0=﹣x2﹣x+4
    ∴x1=﹣4,x2=2
    ∴A(﹣4,0),B(2,0)
    (2)作PD⊥AO交AC于D
    设AC解析式y=kx+b

    解得:
    ∴AC解析式为y=x+4.
    设P(t,﹣t2﹣t+4)则D(t,t+4)
    ∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
    ∴S△ACP=PD×4=﹣(t+2)2+4
    ∴当t=﹣2时,△ACP最大面积4.
    【点睛】
    本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.
    20、;
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a和b的值,代入计算可得.
    【详解】
    原式=÷(﹣)


    =,
    当a=2cs30°+1=2×+1=+1,b=tan45°=1时,
    原式=.
    【点睛】
    本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值.
    21、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.
    【解析】
    (1)直接相加即得到答案;
    (2)根据(1)猜想a+b+c+d=4x;
    (3)用x表示a、b、c、d,相加后即等于4x;
    (4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.
    【详解】
    (1)5+15+19+29=68,
    故答案为68;
    (2)根据(1)猜想a+b+c+d=4x,
    答案为:4倍;
    (3)a=x-12,b=x-2,c=x+2,d=x+12,
    ∴a+b+c+d=x-12+x-2+x+2+x+12=4x,
    ∴猜想正确;
    (4)M=a+b+c+d+x=4x+x=5x,
    若M=5x=1,解得:x=404,
    但整个数表所有的数都为奇数,故不成立,
    ∴M的值不能等于1.
    【点睛】
    本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.
    22、
    【解析】
    设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可.
    【详解】
    设=a, =b,
    则原方程组化为:,
    ①+②得:4a=4,
    解得:a=1,
    把a=1代入①得:1+b=3,
    解得:b=2,
    即,
    解得:,
    经检验是原方程组的解,
    所以原方程组的解是.
    【点睛】
    此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
    23、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人
    【解析】
    (I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;
    (II)根据众数、中位数和平均数的定义计算可得;
    (III)用总人数乘以样本中5天、6天的百分比之和可得.
    【详解】
    解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,
    故答案为150、14;
    (II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,
    平均数为=3.5天;
    (III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.
    【点睛】
    此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
    24、x1 ="-1," x2 =5
    【解析】
    根据十字相乘法因式分解解方程即可.




    平均数(cm)
    561
    560
    561
    560
    方差s2(cm2)
    3.5
    3.5
    15.5
    16.5
    相关试卷

    四川省成都市四川省成都市第七中学2024年初中学校中考三模数学试题(含解析): 这是一份四川省成都市四川省成都市第七中学2024年初中学校中考三模数学试题(含解析),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年浙江省宁波市七中学教育集团中考适应性考试数学试题含解析: 这是一份2022年浙江省宁波市七中学教育集团中考适应性考试数学试题含解析,共22页。试卷主要包含了下列命题中,正确的是,已知等内容,欢迎下载使用。

    2022年四川省宜宾市名校中考适应性考试数学试题含解析: 这是一份2022年四川省宜宾市名校中考适应性考试数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,下列各数是不等式组的解是,如图所示,有一条线段是.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map