年终活动
搜索
    上传资料 赚现金

    2022年天津市滨海新区第四共同体中考数学模拟预测题含解析

    2022年天津市滨海新区第四共同体中考数学模拟预测题含解析第1页
    2022年天津市滨海新区第四共同体中考数学模拟预测题含解析第2页
    2022年天津市滨海新区第四共同体中考数学模拟预测题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年天津市滨海新区第四共同体中考数学模拟预测题含解析

    展开

    这是一份2022年天津市滨海新区第四共同体中考数学模拟预测题含解析,共21页。试卷主要包含了若点P等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
    A. B. C. D.
    2.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
    ①S△ODB=S△OCA;
    ②四边形OAMB的面积不变;
    ③当点A是MC的中点时,则点B是MD的中点.
    其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    3.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
    A. B. C. D.
    4.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为(  )

    A. B. C. D.
    5.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )
    A.3.1; B.4; C.2; D.6.1.
    6.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为(  )
    A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
    7.若一次函数的图像过第一、三、四象限,则函数( )
    A.有最大值 B.有最大值 C.有最小值 D.有最小值
    8.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(  )

    A.30° B.35° C.40° D.50°
    9.已知圆内接正三角形的面积为3,则边心距是(  )
    A.2 B.1 C. D.
    10.若55+55+55+55+55=25n,则n的值为(  )
    A.10 B.6 C.5 D.3
    11.下列各数:π,sin30°,﹣ ,其中无理数的个数是(  )
    A.1个 B.2个 C.3个 D.4个
    12.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.

    14.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.

    15.计算:____.
    16.若分式的值为正,则实数的取值范围是__________________.
    17.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______

    18.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)先化简,再求值:,其中x=﹣1.
    20.(6分)如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,
    (1)求k的值;
    (2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
    (3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

    21.(6分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.
    (1)求两批次购蔬菜各购进多少吨?
    (2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
    22.(8分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
    (1)三辆汽车经过此收费站时,都选择A通道通过的概率是   ;
    (2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.
    23.(8分)解不等式组:,并把解集在数轴上表示出来.
    24.(10分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.

    25.(10分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.

    26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
    (Ⅰ)求二次函数的解析式及点A,B的坐标;
    (Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
    (Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.

    27.(12分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据轴对称图形的概念求解.
    解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,
    故选A.
    “点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    2、D
    【解析】
    根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
    【详解】
    ①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
    ②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
    ③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
    故答案选D.

    考点:反比例系数的几何意义.
    3、D
    【解析】
    甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
    【详解】
    解:由于函数的图像经过点,则有

    ∴图象过第二、四象限,
    ∵k=-1,
    ∴一次函数y=x-1,
    ∴图象经过第一、三、四象限,
    故选:D.
    【点睛】
    本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
    4、A
    【解析】
    由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.
    【详解】
    ∵△ABC中,AC=BC,过点C作CD⊥AB,
    ∴AD=DB=6,∠BDC=∠ADC=90°,
    ∵AE=5,DE∥BC,
    ∴AC=2AE=10,∠EDC=∠BCD,
    ∴sin∠EDC=sin∠BCD=,
    故选:A.
    【点睛】
    本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.
    5、A
    【解析】∵数据组2、x、8、1、1、2的众数是2,
    ∴x=2,
    ∴这组数据按从小到大排列为:2、2、2、1、1、8,
    ∴这组数据的中位数是:(2+1)÷2=3.1.
    故选A.
    6、A
    【解析】
    分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可.
    【详解】
    ∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,
    ∴y1=﹣k2×(-3)=3k2,
    y2=﹣k2×(-1)=k2,
    ∵k≠0,
    ∴y1>y2.
    故答案选A.
    【点睛】
    本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.
    7、B
    【解析】
    解:∵一次函数y=(m+1)x+m的图象过第一、三、四象限,
    ∴m+1>0,m<0,即-1<m<0,
    ∴函数有最大值,
    ∴最大值为,
    故选B.
    8、C
    【解析】
    试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.

    考点:平行线的性质.
    9、B
    【解析】
    根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x, 利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.
    【详解】
    如图,

    连接AO并延长交BC于点D,则AD⊥BC,
    设OD=x,则AD=3x,
    ∵tan∠BAD=,
    ∴BD= tan30°·AD=x,
    ∴BC=2BD=2x,
    ∵ ,
    ∴×2x×3x=3,
    ∴x=1
    所以该圆的内接正三边形的边心距为1,
    故选B.
    【点睛】
    本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.
    10、D
    【解析】
    直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.
    【详解】
    解:∵55+55+55+55+55=25n,
    ∴55×5=52n,
    则56=52n,
    解得:n=1.
    故选D.
    【点睛】
    此题主要考查了幂的乘方运算,正确将原式变形是解题关键.
    11、B
    【解析】
    根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.
    【详解】
    sin30°=,=3,故无理数有π,-,
    故选:B.
    【点睛】
    本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
    12、A
    【解析】
    由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.
    【详解】
    解:几何体从左到右的最高层数依次为1,2,3,
    所以主视图从左到右的层数应该为1,2,3,
    故选A.
    【点睛】
    本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    试题解析:连接

    ∵四边形ABCD是矩形,

    ∴CE=BC=4,
    ∴CE=2CD,


    由勾股定理得:
    ∴阴影部分的面积是S=S扇形CEB′−S△CDE
    故答案为
    14、30
    【解析】
    试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.
    考点:折叠图形的性质
    15、5.
    【解析】
    试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.
    考点:绝对值计算.
    16、x>0
    【解析】
    【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.
    【详解】∵分式的值为正,
    ∴x与x2+2的符号同号,
    ∵x2+2>0,
    ∴x>0,
    故答案为x>0.
    【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.
    17、1
    【解析】
    根据DE∥BC,得到,再代入AC=11-AE,则可求AE长.
    【详解】
    ∵DE∥BC,
    ∴.
    ∵,CE=11,
    ∴,解得AE=1.
    故答案为1.
    【点睛】
    本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.
    18、1
    【解析】
    连接AC交OB于D,由菱形的性质可知.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍.
    【详解】

    连接AC交OB于D.
    四边形OABC是菱形,

    点A在反比例函数的图象上,
    的面积,
    菱形OABC的面积=的面积=1.
    【点睛】
    本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义.解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、-2.
    【解析】
    根据分式的运算法化解即可求出答案.
    【详解】
    解:原式=,
    当x=﹣1时,原式=.
    【点睛】
    熟练运用分式的运算法则.
    20、(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2).
    【解析】
    分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;
    (2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.
    (3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即1.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标.
    详解:(1)∵点A在正比例函数y=2x上,
    ∴把x=4代入正比例函数y=2x,
    解得y=8,∴点A(4,8),
    把点A(4,8)代入反比例函数y=,得k=32,
    (2)∵点A与B关于原点对称,
    ∴B点坐标为(﹣4,﹣8),
    由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;
    (3)∵反比例函数图象是关于原点O的中心对称图形,
    ∴OP=OQ,OA=OB,
    ∴四边形APBQ是平行四边形,
    ∴S△POA=S平行四边形APBQ×=×224=1,
    设点P的横坐标为m(m>0且m≠4),
    得P(m,),
    过点P、A分别做x轴的垂线,垂足为E、F,
    ∵点P、A在双曲线上,
    ∴S△POE=S△AOF=16,
    若0<m<4,如图,
    ∵S△POE+S梯形PEFA=S△POA+S△AOF,
    ∴S梯形PEFA=S△POA=1.
    ∴(8+)•(4﹣m)=1.
    ∴m1=﹣7+3,m2=﹣7﹣3(舍去),
    ∴P(﹣7+3,16+);
    若m>4,如图,
    ∵S△AOF+S梯形AFEP=S△AOP+S△POE,
    ∴S梯形PEFA=S△POA=1.
    ∴×(8+)•(m﹣4)=1,
    解得m1=7+3,m2=7﹣3(舍去),
    ∴P(7+3,﹣16+).
    ∴点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).

    点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.
    21、(1)第一次购进40吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1.
    【解析】
    (1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨.构建方程组即可解决问题.
    (2)设精加工x吨,利润为w元,则粗加工(100-x)吨.利润w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解决问题.
    【详解】
    (1)设第一次购进a吨,第二次购进b吨,

    解得 ,
    答:第一次购进40吨,第二次购进160吨;
    (2)设精加工x吨,利润为w元,
    w=800x+400(200﹣x)=400x+80000,
    ∵x≤3(200﹣x),
    解得,x≤150,
    ∴当x=150时,w取得最大值,此时w=1,
    答:为获得最大利润,精加工数量应为150吨,最大利润是1.
    【点睛】
    本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.
    22、(1);(2)
    【解析】
    (1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;
    (2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.
    【详解】
    解:(1)画树状图得:

    共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,
    所以都选择A通道通过的概率为,
    故答案为:;
    (2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,
    ∴至少有两辆汽车选择B通道通过的概率为.
    【点睛】
    考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.
    23、x≥
    【解析】
    分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.
    详解:,
    由①得,x>﹣2;
    由②得,x≥,
    故此不等式组的解集为:x≥.
    在数轴上表示为:.
    点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    24、(1)CD=BE,理由见解析;(1)证明见解析.
    【解析】
    (1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
    (1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
    【详解】
    解:(1)CD=BE,理由如下:
    ∵△ABC和△ADE为等腰三角形,
    ∴AB=AC,AD=AE,
    ∵∠EAD=∠BAC,
    ∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
    即∠EAB=∠CAD,
    在△EAB与△CAD中,
    ∴△EAB≌△CAD,
    ∴BE=CD;
    (1)∵∠BAC=90°,
    ∴△ABC和△ADE都是等腰直角三角形,
    ∴∠ABF=∠C=45°,
    ∵△EAB≌△CAD,
    ∴∠EBA=∠C,
    ∴∠EBA=45°,
    ∴∠EBF=90°,
    在Rt△BFE中,BF1+BE1=EF1,
    ∵AF平分DE,AE=AD,
    ∴AF垂直平分DE,
    ∴EF=FD,
    由(1)可知,BE=CD,
    ∴BF1+CD1=FD1.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
    25、(1)详见解析;(2)6
    【解析】
    (1)连接CD,证明即可得到结论;
    (2)设圆O的半径为r,在Rt△BDO中,运用勾股定理即可求出结论.
    【详解】
    (1)证明:连接CD,





    .
    (2)设圆O的半径为,,
    设.
    【点睛】
    本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.
    26、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
    【解析】
    (1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
    (2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
    (3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
    【详解】
    (Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
    ∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
    令y=0,得到:x2﹣4x﹣5=0,
    解得x=﹣1或5,
    ∴A(﹣1,0),B(5,0).
    (Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
    把点Q′坐标代入y=﹣x2+4x+5,
    得到:m2﹣4m﹣5=﹣m2﹣4m+5,
    ∴m=或(舍弃),
    ∴Q(,).
    (Ⅲ)如图,作MK⊥对称轴x=2于K.

    ①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
    ∵此时点M的横坐标为1,
    ∴y=8,
    ∴M(1,8),N(2,13),
    ②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
    此时M′的横坐标为3,可得M′(3,8),N′(2,3).
    【点睛】
    本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
    27、 (1)证明见解析;(2)
    【解析】
    试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;
    (2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.
    试题解析:(1)证明:连接OD,CD,

    ∵BC为⊙O直径,
    ∴∠BDC=90°,
    即CD⊥AB,
    ∵△ABC是等腰三角形,
    ∴AD=BD,
    ∵OB=OC,
    ∴OD是△ABC的中位线,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∵D点在⊙O上,
    ∴DE为⊙O的切线;
    (2)解:∵∠A=∠B=30°,BC=4,
    ∴CD=BC=2,BD=BC•cos30°=2,
    ∴AD=BD=2,AB=2BD=4,
    ∴S△ABC=AB•CD=×4×2=4,
    ∵DE⊥AC,
    ∴DE=AD=×2=,
    AE=AD•cos30°=3,
    ∴S△ODE=OD•DE=×2×=,
    S△ADE=AE•DE=××3=,
    ∵S△BOD=S△BCD=×S△ABC=×4=,
    ∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.

    相关试卷

    天津市滨海新区大港油田2019年中考数学模拟试卷(一)(含解析):

    这是一份天津市滨海新区大港油田2019年中考数学模拟试卷(一)(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    天津市滨海新区第四共同体市级名校2022年中考数学考前最后一卷含解析:

    这是一份天津市滨海新区第四共同体市级名校2022年中考数学考前最后一卷含解析,共22页。试卷主要包含了一组数据等内容,欢迎下载使用。

    2021-2022学年天津市滨海新区中考押题数学预测卷含解析:

    这是一份2021-2022学年天津市滨海新区中考押题数学预测卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,方程的解是.,下列各式中,正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map