2022年云南省玉溪市易门县重点名校中考四模数学试题含解析
展开
这是一份2022年云南省玉溪市易门县重点名校中考四模数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为( )
A.1 B.3 C.5 D.1或5
2.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x
﹣2
﹣1
0
1
2
y
8
3
0
﹣1
0
则抛物线的顶点坐标是( )
A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
3.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为( )
A. B. C. D.
4.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )
A. B. C. D.
5.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )
A.6 B.5 C.2 D.3
6.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )
A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣1
7.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )
A.30° B.15° C.18° D.20°
8.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )
A. B. C. D.
9.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:
A.140元 B.150元 C.160元 D.200元
10.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
11.如果关于x的方程没有实数根,那么c在2、1、0、中取值是( )
A.; B.; C.; D..
12.下列运算正确的是( )
A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.
14.已知一次函数的图象与直线y=x+3平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为_____.
15.已知点P(2,3)在一次函数y=2x-m的图象上,则m=_______.
16.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.
17.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.
18.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=,过P点作x轴的垂线交于点C,连接AC,
(1)求一次函数的解析式.
(2)若AC是△PCB的中线,求反比例函数的关系式.
20.(6分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值.
21.(6分)解不等式组,并将解集在数轴上表示出来.
22.(8分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.
(1)小明选择去郊游的概率为多少;
(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.
23.(8分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.
24.(10分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
(1)A,B 两处粮仓原有存粮各多少吨?
(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.
25.(10分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.
26.(12分)如图,网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知和的顶点都在格点上,线段的中点为.
(1)以点为旋转中心,分别画出把顺时针旋转,后的,;
(2)利用(1)变换后所形成的图案,解答下列问题:
①直接写出四边形,四边形的形状;
②直接写出的值;
③设的三边,,,请证明勾股定理.
27.(12分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为 件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
【详解】
当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,
当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
故选D.
【点睛】
本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
2、C
【解析】
分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
详解:当或时,,当时,,
,解得 ,
二次函数解析式为,
抛物线的顶点坐标为,
故选C.
点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
3、C
【解析】
设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.
【详解】
设,则.
由折叠的性质,得.
因为点是的中点,
所以.
在中,
由勾股定理,得,
即,
解得,
故线段的长为4.
故选C.
【点睛】
此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.
4、C
【解析】
试题解析:∵四边形ABCD是平行四边形,
故选C.
5、C
【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
【详解】
∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵BE:ED=1:3,
∴BE:OB=1:2,
∵AE⊥BD,
∴AB=OA,
∴OA=AB=OB,
即△OAB是等边三角形,
∴∠ABD=60°,
∵AE⊥BD,AE=3,
∴AB=,
故选C.
【点睛】
此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
6、C
【解析】
试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.
考点:科学记数法—表示较小的数.
7、C
【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
【详解】
∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C
【点睛】
本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
8、C
【解析】
根据平行四边形的性质和圆周角定理可得出答案.
【详解】
根据平行四边形的性质可知∠B=∠AOC,
根据圆内接四边形的对角互补可知∠B+∠D=180°,
根据圆周角定理可知∠D=∠AOC,
因此∠B+∠D=∠AOC+∠AOC=180°,
解得∠AOC=120°,
因此∠ADC=60°.
故选C
【点睛】
该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.
9、B
【解析】
试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
故选B.
考点:一元一次方程的应用
10、B
【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
【详解】
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴.
∵点B坐标为(6,1),
∴D的横坐标为6,E的纵坐标为1.
∵D,E在反比例函数的图象上,
∴D(6,1),E(,1),
∴BE=6﹣=,BD=1﹣1=3,
∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF•ED=BE•BD,即BF=3×,
∴BF=,
∴BB′=.
设EG=x,则BG=﹣x.
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=.
故选B.
【点睛】
本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
11、A
【解析】
分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.
详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.
点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
12、D
【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (x﹣y)2=x2﹣2xy+y2 ,故错误; D. x3•x=x4
,正确,故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、相离
【解析】
设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.
【详解】
设圆O的半径是r,
则πr2=9π,
∴r=3,
∵点0到直线l的距离为π,
∵3<π,
即:r<d,
∴直线l与⊙O的位置关系是相离,
故答案为:相离.
【点睛】
本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.
14、y=x﹣1
【解析】
分析:根据互相平行的两直线解析式的k值相等设出一次函数的解析式,再把点(﹣2,﹣4)的坐标代入解析式求解即可.
详解:∵一次函数的图象与直线y=x+1平行,∴设一次函数的解析式为y=x+b.
∵一次函数经过点(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以这个一次函数的表达式是:y=x﹣1.
故答案为y=x﹣1.
点睛:本题考查了两直线平行的问题,熟记平行直线的解析式的k值相等设出一次函数解析式是解题的关键.
15、1
【解析】
根据待定系数法求得一次函数的解析式,解答即可.
【详解】
解:∵一次函数y=2x-m的图象经过点P(2,3),
∴3=4-m,
解得m=1,
故答案为:1.
【点睛】
此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.
16、④
【解析】
根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
【详解】
①[0)=1,故本项错误;
②[x)−x>0,但是取不到0,故本项错误;
③[x)−x⩽1,即最大值为1,故本项错误;
④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
故答案是:④.
【点睛】
此题考查运算的定义,解题关键在于理解题意的运算法则.
17、125
【解析】
解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
∵∠A=70°,∠B+∠C=180∘−∠A=110°
∵O在△ABC三边上截得的弦长相等,
∴OM=ON=OP,
∴O是∠B,∠C平分线的交点
∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.
故答案为:125°
【点睛】
本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.
18、4
【解析】
根据锐角的余弦值等于邻边比对边列式求解即可.
【详解】
∵∠C=90°,AB=6,
∴,
∴BC=4.
【点睛】
本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中, , ,.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(2)y=2x+2;(2)y=.
【解析】
(2)由cos∠ABO=,可得到tan∠ABO=2,从而可得到k=2;
(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.
【详解】
(2)∵cos∠ABO=,
∴tan∠ABO=2.又∵OA=2
∴OB=2.B(-2,0)代入y=kx+2得k=2
∴一次函数的解析式为y=2x+2.
(2)当x=0时,y=2,
∴A(0,2).
当y=0时,2x+2=0,解得:x=﹣2.
∴B(﹣2,0).
∵AC是△PCB的中线,
∴P(2,4).
∴m=xy=2×4=4,
∴反例函数的解析式为y=.
【点睛】
本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k=tan∠ABO是解题的关键.
20、(1)7000辆;(2)a的值是1.
【解析】
(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;
(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.
【详解】
解:(1)设一月份该公司投入市场的自行车x辆,
x﹣(7500﹣110)≥10%x,
解得x≥7000,
答:一月份该公司投入市场的自行车至少有7000辆;
(2)由题意可得,
[7500×(1﹣1%)+110(1+4a%)](1﹣a%)=7752,
化简,得
a2﹣250a+4600=0,
解得:a1=230,a2=1,
∵,
解得a<80,
∴a=1,
答:a的值是1.
【点睛】
本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.
21、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.
【解析】
分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案
详解:解不等式①,得x>﹣4,
解不等式②,得x≤1,
把不等式①②的解集在数轴上表示如图
,
原不等式组的解集为﹣4<x≤1.
点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.
22、(1);(2).
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案
【详解】
(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,
∴小明选择去郊游的概率=;
(2)列表得:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,
所以小明和小亮的选择结果相同的概率==.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
23、(1)y=﹣x2﹣2x+1;(2)(﹣ ,)
【解析】
(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;
(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,△PDE的周长也最大.将x=-代入-x2-2x+1,进而得到P点的坐标.
【详解】
解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+1;
(2)∵A(﹣1,0),B(0,1),
∴OA=OB=1,
∴△AOB是等腰直角三角形,
∴∠BAO=45°.
∵PF⊥x轴,
∴∠AEF=90°﹣45°=45°,
又∵PD⊥AB,
∴△PDE是等腰直角三角形,
∴PE越大,△PDE的周长越大.
设直线AB的解析式为y=kx+b,则
,解得,
即直线AB的解析式为y=x+1.
设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),
则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,
所以当x=﹣时,PE最大,△PDE的周长也最大.
当x=﹣时,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,
即点P坐标为(﹣,)时,△PDE的周长最大.
【点睛】
本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.
24、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
【解析】
(1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
(2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
(3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
【详解】
(1)设A,B两处粮仓原有存粮x,y吨
根据题意得:
解得:x=270,y=1.
答:A,B两处粮仓原有存粮分别是270,1吨.
(2)A粮仓支援C粮仓的粮食是×270=162(吨),
B粮仓支援C粮仓的粮食是×1=72(吨),
A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
∵234>200,
∴此次调拨能满足C粮仓需求.
(3)如图,
根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
在Rt△ABC中,sin∠BAC=,
∴BC=AB•sin∠BAC=1×0.44=79.2.
∵此车最多可行驶4×35=140(千米)<2×79.2,
∴小王途中须加油才能安全回到B地.
【点睛】
求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
25、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.
试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.
∵M是BC的中点,∴BM=CM.
在△BDM和△CEM中,∵,
∴△BDM≌△CEM(SAS).∴MD=ME.
考点:1.等腰三角形的性质;2.全等三角形的判定与性质.
26、(1)见解析;(2)①正方形;② ;③见解析.
【解析】
(1)根据旋转作图的方法进行作图即可;
(2)①根据旋转的性质可证AC=BC1=B1C2=B2C3,从而证出四边形CC1C2C3是菱形,再根据有一个角是直角的菱形是正方形即可作出判断,同理可判断四边形ABB1B2是正方形;
②根据相似图形的面积之比等相似比的平方即可得到结果;
③用两种不同的方法计算大正方形的面积化简即可得到勾股定理.
【详解】
(1)如图,
(2)①四边形CC1C2C3和四边形ABB1B2是正方形.理由如下:
∵△ABC≌△BB1C1,
∴AC=BC1,BC==B1C1,AB=BB1.
再根据旋转的性质可得:BC1=B1C2=B2C3,
B2C1=B2C2=AC3,
BB1=B1B2=AB2.
∴CC1=C1C2=C2C3=CC3
AB=BB1=B1B2=AB2
∴四边形CC1C2C3和四边形ABB1B2是菱形.
∵∠C=∠ABB1=90°,
∴四边形CC1C2C3和四边形ABB1B2是正方形.
②∵四边形CC1C2C3和四边形ABB1B2是正方形,
∴四边形CC1C2C3∽四边形ABB1B2.
∴=
∵AB= ,CC1= ,
∴== .
③ 四边形CC1C2C3的面积= = ,
四边形CC1C2C3的面积=4△ABC的面积+四边形ABB1B2的面积
=4 + =
∴ =,
化简得: =.
【点睛】
本题考查了旋转作图和旋转的性质,正方形的判定和性质,勾股定理,掌握相关知识是解题的关键.
27、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.
【解析】
分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;
(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.
详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),
故答案为180;
(2)由题意得:
y=(x﹣40)[200﹣10(x﹣50)]
=﹣10x2+1100x﹣28000
=﹣10(x﹣55)2+2250
∴每件销售价为55元时,获得最大利润;最大利润为2250元.
点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.
相关试卷
这是一份2024年云南省玉溪市易门县中考数学二模试卷+,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年云南省玉溪市易门县中考数学一模试卷(含详细答案解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份云南省玉溪市易门县2024年中考数学一模试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。