终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年山东省青岛市西海岸、平度、胶州重点中学中考押题数学预测卷含解析

    立即下载
    加入资料篮
    2022年山东省青岛市西海岸、平度、胶州重点中学中考押题数学预测卷含解析第1页
    2022年山东省青岛市西海岸、平度、胶州重点中学中考押题数学预测卷含解析第2页
    2022年山东省青岛市西海岸、平度、胶州重点中学中考押题数学预测卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省青岛市西海岸、平度、胶州重点中学中考押题数学预测卷含解析

    展开

    这是一份2022年山东省青岛市西海岸、平度、胶州重点中学中考押题数学预测卷含解析,共21页。试卷主要包含了如图的立体图形,从左面看可能是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.关于二次函数,下列说法正确的是( )
    A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧
    C.当时,的值随值的增大而减小 D.的最小值为-3
    2.下列各式中,计算正确的是 ( )
    A. B.
    C. D.
    3.函数y=中自变量x的取值范围是
    A.x≥0 B.x≥4 C.x≤4 D.x>4
    4.如图所示的几何体的俯视图是(  )

    A. B. C. D.
    5.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为(  )

    A.31° B.32° C.59° D.62°
    6.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰(  )



    平均数
    8
    8
    方差
    1.2
    1.8

    A.甲 B.乙 C.丙 D.丁
    7.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(  )

    A.(,) B.(2,) C.(,) D.(,3﹣)
    8.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )

    A. B. C. D.
    9.如图的立体图形,从左面看可能是(  )

    A. B.
    C. D.
    10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为(  )

    A. B.2 C. D.2
    11.下列关于x的方程中,属于一元二次方程的是(  )
    A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=0
    12.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为( )

    A.110° B.115° C.120° D.130°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.

    14.如图,在平行四边形 ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点 E,交 DC 的延长线于点 F,BG⊥AE,垂足为 G,BG=4,则△CEF 的周长为____.

    15.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.

    16.某校“百变魔方”社团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为_______.
    17.如图,已知O为△ABC内一点,点D、E分别在边AB和AC上,且,DE∥BC,设、,那么______(用、表示).

    18.某校体育室里有球类数量如下表:
    球类
    篮球
    排球
    足球
    数量
    3
    5
    4
    如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知:不等式≤2+x
    (1)求不等式的解;
    (2)若实数a满足a>2,说明a是否是该不等式的解.
    20.(6分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:
    AQI指数
    质量等级
    天数(天)
    0-50

    m
    51-100

    44
    101-150
    轻度污染
    n
    151-200
    中度污染
    4
    201-300
    重度污染
    2
    300以上
    严重污染
    2

    (1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占 %;
    (2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?
    21.(6分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.

    请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
    22.(8分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:
    本次抽查的样本容量是     ;在扇形统计图中,“主动质疑”对应的圆心角为     度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?
    23.(8分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E.
    (1)求证:EF是⊙O的切线;
    (2)连接BC,若AB=5,BC=3,求线段AE的长.

    24.(10分)计算:﹣3tan30°.
    25.(10分)列方程解应用题:
    某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?
    26.(12分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.

    27.(12分)(1)计算:;
    (2)化简:.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.
    详解:∵y=2x2+4x-1=2(x+1)2-3,
    ∴当x=0时,y=-1,故选项A错误,
    该函数的对称轴是直线x=-1,故选项B错误,
    当x<-1时,y随x的增大而减小,故选项C错误,
    当x=-1时,y取得最小值,此时y=-3,故选项D正确,
    故选D.
    点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
    2、C
    【解析】
    接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
    【详解】
    A、无法计算,故此选项错误;
    B、a2•a3=a5,故此选项错误;
    C、a3÷a2=a,正确;
    D、(a2b)2=a4b2,故此选项错误.
    故选C.
    【点睛】
    此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
    3、B
    【解析】
    根据二次根式的性质,被开方数大于等于0,列不等式求解.
    【详解】
    根据题意得:x﹣1≥0,解得x≥1,
    则自变量x的取值范围是x≥1.
    故选B.
    【点睛】
    本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.
    4、D
    【解析】
    找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.
    【详解】
    从上往下看,该几何体的俯视图与选项D所示视图一致.
    故选D.
    【点睛】
    本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.
    5、A
    【解析】
    根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.
    【详解】
    ∵在△ABC中,AC=BC,
    ∴∠B=∠CAB,
    ∵AE∥BD,∠CAE=118°,
    ∴∠B+∠CAB+∠CAE=180°,
    即2∠B=180°−118°,
    解得:∠B=31°,
    故选A.
    【点睛】
    此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B=∠CAB.
    6、D
    【解析】
    求出甲、乙的平均数、方差,再结合方差的意义即可判断.
    【详解】
    =(6+10+8+9+8+7+8+9+7+7)=8,
    = [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
    =×13
    =1.3;
    =(7+10+7+7+9+8+7+9+9+7)=8,
    = [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
    =×12
    =1.2;
    丙的平均数为8,方差为1.2,
    丁的平均数为8,方差为1.8,
    故4个人的平均数相同,方差丁最大.
    故应该淘汰丁.
    故选D.
    【点睛】
    本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
    7、A
    【解析】
    解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.

    8、B
    【解析】
    根据俯视图是从上往下看的图形解答即可.
    【详解】
    从上往下看到的图形是:
    .
    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    9、A
    【解析】
    根据三视图的性质即可解题.
    【详解】
    解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,
    故选A.
    【点睛】
    本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.
    10、C
    【解析】
    通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.
    【详解】
    过点D作DE⊥BC于点E
    .
    由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..
    ∴AD=a.
    ∴DE•AD=a.
    ∴DE=1.
    当点F从D到B时,用s.
    ∴BD=.
    Rt△DBE中,
    BE=,
    ∵四边形ABCD是菱形,
    ∴EC=a-1,DC=a,
    Rt△DEC中,
    a1=11+(a-1)1.
    解得a=.
    故选C.
    【点睛】
    本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.
    11、B
    【解析】
    根据一元二次方程必须同时满足三个条件:
    ①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
    ②只含有一个未知数;
    ③未知数的最高次数是2进行分析即可.
    【详解】
    A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;
    B. 是一元二次方程,故此选项正确;
    C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;
    D. a=0时,不是一元二次方程,故此选项错误;
    故选B.
    【点睛】
    本题考查一元二次方程的定义,解题的关键是明白:
    一元二次方程必须同时满足三个条件:
    ①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
    ②只含有一个未知数;
    ③未知数的最高次数是2.
    12、A
    【解析】
    试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.
    解:根据三角形的外角性质,
    ∴∠1+∠2=∠4=110°,
    ∵a∥b,
    ∴∠3=∠4=110°,
    故选A.

    点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3
    【解析】
    先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.
    【详解】
    ∵四边形ABCD是矩形,∴∠A=90°.
    ∵AB=8,AD=6,∴BD1.
    ∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.
    故答案为:3.

    【点睛】
    本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    14、8
    【解析】
    试题解析:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,
    ∴∠BAF=∠DAF,
    ∵AB∥DF,
    ∴∠BAF=∠F,
    ∴∠F=∠DAF,
    ∴△ADF是等腰三角形,AD=DF=9;
    ∵AD∥BC,
    ∴△EFC是等腰三角形,且FC=CE.
    ∴EC=FC=9-6=3,
    ∴AB=BE.
    ∴在△ABG中,BG⊥AE,AB=6,BG=4
    可得:AG=2,
    又∵BG⊥AE,
    ∴AE=2AG=4,
    ∴△ABE的周长等于16,
    又∵▱ABCD,
    ∴△CEF∽△BEA,相似比为1:2,
    ∴△CEF的周长为8
    15、
    【解析】
    试题解析:连接AE,

    在Rt三角形ADE中,AE=4,AD=2,
    ∴∠DEA=30°,
    ∵AB∥CD,
    ∴∠EAB=∠DEA=30°,
    ∴的长度为:=.
    考点:弧长的计算.
    16、
    【解析】
    分析:设A款魔方的单价为x元,B魔方单价为y元,根据“购买两个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同”,即可得出关于x,y的二元一次方程组,此题得解.
    解:设A魔方的单价为x元,B款魔方的单价为y元,根据题意得:
    故答案为
    点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    17、
    【解析】
    根据,DE∥BC,结合平行线分线段成比例来求.
    【详解】
    ∵,DE∥BC,
    ∴,
    ∴ = =.
    ∵,

    ∴.
    故答案为:.
    【点睛】
    本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
    18、
    【解析】
    先求出球的总数,再用足球数除以总数即为所求.
    【详解】
    解:一共有球3+5+4=12(个),其中足球有4个,
    ∴拿出一个球是足球的可能性=.
    【点睛】
    本题考查了概率,属于简单题,熟悉概率概念,列出式子是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)x≥﹣1;(2)a是不等式的解.
    【解析】
    (1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
    (2)根据不等式的解的定义求解可得
    【详解】
    解:(1)去分母得:2﹣x≤3(2+x),
    去括号得:2﹣x≤6+3x,
    移项、合并同类项得:﹣4x≤4,
    系数化为1得:x≥﹣1.
    (2)∵a>2,不等式的解集为x≥﹣1,而2>﹣1,
    ∴a是不等式的解.
    【点睛】
    本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键
    20、 (1)m=20,n=8;55;(2) 答案见解析.
    【解析】
    (1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;
    (2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.
    【详解】
    (1)∵m=80×25%=20,n=80-20-44-4-2-2=8,
    ∴空气质量等级为“良”的天数占:×100%=55%.
    故答案为20,8,55;
    (2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),
    答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;
    补全统计图:

    【点睛】
    此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    21、200名;见解析;;(4)375.
    【解析】
    根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
    根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;
    根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
    根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
    【详解】
    解:,
    答:此次抽样调查中,共调查了200名学生;
    反对的人数为:,
    补全的条形统计图如右图所示;
    扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;
    (4),
    答:该校1500名学生中有375名学生持“无所谓”意见.
    【点睛】
    本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    22、 (1)560;(2)54;(3)补图见解析;(4)18000人
    【解析】
    (1)本次调查的样本容量为224÷40%=560(人);
    (2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;
    (3)“讲解题目”的人数是:560−84−168−224=84(人).

    (4)60000×=18000(人), 
    答:在课堂中能“独立思考”的学生约有18000人.
    23、(1)证明见解析
    (2)
    【解析】
    (1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,根据切线的判定定理证明;
    (2)根据勾股定理求出AC,证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算即可.
    【详解】
    (1)证明:连接OC,

    ∵OA=OC,
    ∴∠OCA=∠BAC,
    ∵点C是的中点,
    ∴∠EAC=∠BAC,
    ∴∠EAC=∠OCA,
    ∴OC∥AE,
    ∵AE⊥EF,
    ∴OC⊥EF,即EF是⊙O的切线;
    (2)解:∵AB为⊙O的直径,
    ∴∠BCA=90°,
    ∴AC==4,
    ∵∠EAC=∠BAC,∠AEC=∠ACB=90°,
    ∴△AEC∽△ACB,
    ∴,
    ∴AE=.
    【点睛】
    本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.
    24、1.
    【解析】
    直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案.
    【详解】
    ﹣3tan30°
    =4+﹣1﹣1﹣3×
    =1.
    【点睛】
    此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键.
    25、(1)2000件;(2)90260元.
    【解析】
    (1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价÷数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)用(1)的结论×2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论.
    【详解】
    解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,
    根据题意得:-=4,
    解得:x=2000,
    经检验,x=2000是所列分式方程的解,且符合题意.
    答:商场第一批购进衬衫2000件.
    (2)2000×2=4000(件),
    (2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).
    答:售完这两批衬衫,商场共盈利90260元.
    【点睛】
    本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.
    26、证明见解析.
    【解析】
    试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.
    试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.
    ∵M是BC的中点,∴BM=CM.
    在△BDM和△CEM中,∵,
    ∴△BDM≌△CEM(SAS).∴MD=ME.
    考点:1.等腰三角形的性质;2.全等三角形的判定与性质.
    27、(1)4+;(2).
    【解析】
    (1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;
    (3)根据分式的减法和除法可以解答本题.
    【详解】
    (1)
    =4+1+|1﹣2×|
    =4+1+|1﹣|
    =4+1+﹣1
    =4+;
    (2)
    =
    =
    =.
    【点睛】
    本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.

    相关试卷

    2023-2024学年山东省青岛市西海岸、平度、胶州数学九上期末监测模拟试题含答案:

    这是一份2023-2024学年山东省青岛市西海岸、平度、胶州数学九上期末监测模拟试题含答案,共8页。试卷主要包含了的值等于,的值是,下列几何体的左视图为长方形的是等内容,欢迎下载使用。

    山东省青岛市李沧、平度、西海岸、胶州2021-2022学年中考二模数学试题含解析:

    这是一份山东省青岛市李沧、平度、西海岸、胶州2021-2022学年中考二模数学试题含解析,共23页。试卷主要包含了太原市出租车的收费标准是等内容,欢迎下载使用。

    2022届山东省青岛李沧、平度、西海岸、胶州中考四模数学试题含解析:

    这是一份2022届山东省青岛李沧、平度、西海岸、胶州中考四模数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map