|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年洛阳市重点中学中考数学押题试卷含解析
    立即下载
    加入资料篮
    2022年洛阳市重点中学中考数学押题试卷含解析01
    2022年洛阳市重点中学中考数学押题试卷含解析02
    2022年洛阳市重点中学中考数学押题试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年洛阳市重点中学中考数学押题试卷含解析

    展开
    这是一份2022年洛阳市重点中学中考数学押题试卷含解析,共21页。试卷主要包含了我们知道等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( )

    (A)33 (B)34 (C)35 (D)36
    2.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
    A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2
    3.若代数式的值为零,则实数x的值为(  )
    A.x=0 B.x≠0 C.x=3 D.x≠3
    4.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于(  )

    A.40° B.45° C.50° D.60°
    5.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为(  )

    A.(,2) B.(4,1) C.(4,) D.(4,)
    6.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )

    A.1:3 B.1:4 C.1:5 D.1:6
    7.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有(   )和黑子.

    A.37 B.42 C.73 D.121
    8.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是(  )

    A.60° B.35° C.30.5° D.30°
    9.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是(  )

    A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)
    10.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为(  )

    A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.

    12.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.

    13.观察下列一组数,,,,,…探究规律,第n个数是_____.
    14.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是______.
    15.新定义[a,b]为一次函数(其中a≠0,且a,b为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程的解为 .
    16.不等式>4﹣x的解集为_____.
    三、解答题(共8题,共72分)
    17.(8分)先化简,后求值:(1﹣)÷(),其中a=1.
    18.(8分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
    (3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
    19.(8分) (y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
    求的值.
    20.(8分)如图,在Rt△ABC中,,点在边上,⊥,点为垂足,,∠DAB=450,tanB=.
    (1)求的长;
    (2)求的余弦值.

    21.(8分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题:

    (1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。
    (2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.
    22.(10分)如图,点在线段上,,,.求证:.

    23.(12分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.

    (1)求二次函数的解析式;
    (2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
    (3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.
    24.抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.
    (1)求该抛物线的解析式和顶点坐标;
    (2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.
    ①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;
    ②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:过点E作EM⊥OA,垂足为M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;
    故选D.

    考点:反比例函数综合题.
    2、A
    【解析】
    试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
    解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
    故选A.
    考点:二次函数图象与几何变换.
    3、A
    【解析】
    根据分子为零,且分母不为零解答即可.
    【详解】
    解:∵代数式的值为零,
    ∴x=0,
    此时分母x-3≠0,符合题意.
    故选A.
    【点睛】
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
    4、C
    【解析】
    分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得∠C的度数.
    详解:∵AB∥CD,



    故选C.
    点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.
    5、D
    【解析】
    由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′= =2,于是得到结论.
    【详解】
    解:∵AD′=AD=4,
    AO=AB=1,
    ∴OD′==2,
    ∵C′D′=4,C′D′∥AB,
    ∴C′(4,2),
    故选:D.
    【点睛】
    本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.
    6、C
    【解析】
    根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.
    【详解】
    解:连接CE,∵AE∥BC,E为AD中点,
    ∴ .
    ∴△FEC面积是△AEF面积的2倍.
    设△AEF面积为x,则△AEC面积为3x,
    ∵E为AD中点,
    ∴△DEC面积=△AEC面积=3x.
    ∴四边形FCDE面积为1x,
    所以S△AFE:S四边形FCDE为1:1.

    故选:C.
    【点睛】
    本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.
    7、C
    【解析】
    解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C.
    点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
    8、D
    【解析】
    根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
    【详解】
    连接OB,
    ∵点B是弧的中点,
    ∴∠AOB= ∠AOC=60°,
    由圆周角定理得,∠D= ∠AOB=30°,
    故选D.

    【点睛】
    此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
    9、A
    【解析】
    由题意可知, 点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.
    【详解】
    由题意可知, 点A与点A1关于原点成中心对称,
    ∵点A的坐标是(﹣3,2),
    ∴点A关于点O的对称点A'点的坐标是(3,﹣2).
    故选A.
    【点睛】
    本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.
    10、C
    【解析】
    根据题目数据求出函数解析式,根据二次函数的性质可得.
    【详解】
    根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
    得:
    解得:a=−0.2,b=1.5,c=−2,
    即p=−0.2t2+1.5t−2,
    当t=−=3.75时,p取得最大值,
    故选C.
    【点睛】
    本题考查了二次函数的应用,熟练掌握性质是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、3
    【解析】
    【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.
    【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,
    ∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,
    ∴EF=BC=3,AE=AB,
    ∵DE=EF,
    ∴AD=DE=3,
    ∴AE==3,
    ∴AB=3,
    故答案为3.
    【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.
    12、
    【解析】
    列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
    【详解】
    解:列表如下:

    5
    6
    7
    8
    9
    5
    ﹣﹣﹣
    (6、5)
    (7、5)
    (8、5)
    (9、5)
    6
    (5、6)
    ﹣﹣﹣
    (7、6)
    (8、6)
    (9、6)
    7
    (5、7)
    (6、7)
    ﹣﹣﹣
    (8、7)
    (9、7)
    8
    (5、8)
    (6、8)
    (7、8)
    ﹣﹣﹣
    (9、8)
    9
    (5、9)
    (6、9)
    (7、9)
    (8、9)
    ﹣﹣﹣
    所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
    则P(恰好是两个连续整数)=
    故答案为.
    【点睛】
    此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
    13、
    【解析】
    根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n个数分子的规律是n,分母的规律是2n+1,进而得出这一组数的第n个数的值.
    【详解】
    解:因为分子的规律是连续的正整数,分母的规律是2n+1,
    所以第n个数就应该是:,
    故答案为.
    【点睛】
    此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n表示出来.
    14、2.
    【解析】
    试题解析:由于关于x的一元二次方程的一个根是2,把x=2代入方程,得 ,解得,k2=2,k2=2
    当k=2时,由于二次项系数k﹣2=2,方程不是关于x的二次方程,故k≠2.
    所以k的值是2.故答案为2.
    15、.
    【解析】
    试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,
    得到y=3x+m+2为正比例函数,即m+2=0,
    解得:m=-2,
    则分式方程为,
    去分母得:2-(x-1)=2(x-1),
    去括号得:2-x+1=2x-2,
    解得:x=,
    经检验x=是分式方程的解
    考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.
    16、x>1.
    【解析】
    按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.
    【详解】
    解:去分母得:x﹣1>8﹣2x,
    移项合并得:3x>12,
    解得:x>1,
    故答案为:x>1
    【点睛】
    本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.

    三、解答题(共8题,共72分)
    17、,2.
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
    【详解】
    解:原式=


    当a=1时,
    原式==2.
    【点睛】
    本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
    18、(1)y=-x2-2x+1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(-2,6)(2)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2)
    【解析】
    解:(1)∵直线y=x+1与x轴、y轴分别交于A、B两点,∴A(-1,0),B(0,1).
    ∵抛物线y=-x2+bx+c经过A、B两点,
    ∴,解得.
    ∴抛物线解析式为y=-x2-2x+1.
    令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,
    ∴C(1,0).
    (2)如图1,
    设D(t,0).
    ∵OA=OB,∴∠BAO=15°.
    ∴E(t,t+1),P(t,-t2-2t+1).
    PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.
    ∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).
    (2)存在.如图2,过N点作NH⊥x轴于点H.
    设OH=m(m>0),∵OA=OB,∴∠BAO=15°.
    ∴NH=AH=1-m,∴yQ=1-m.
    又M为OA中点,∴MH=2-m.
    当△MON为等腰三角形时:
    ①若MN=ON,则H为底边OM的中点,
    ∴m=1,∴yQ=1-m=2.
    由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ②若MN=OM=2,则在Rt△MNH中,
    根据勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,
    化简得m2-6m+8=0,解得:m1=2,m2=1(不合题意,舍去).
    ∴yQ=2,由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ③若ON=OM=2,则在Rt△NOH中,
    根据勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,
    化简得m2-1m+6=0,∵△=-8<0,
    ∴此时不存在这样的直线l,使得△MON为等腰三角形.
    综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2).
    (1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标.
    (2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值.
    (2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标. “△MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解.
    19、1
    【解析】
    通过已知等式化简得到未知量的关系,代入目标式子求值.
    【详解】
    ∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
    ∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,
    ∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,
    ∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,
    ∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.
    ∵x,y,z均为实数,
    ∴x=y=z.

    20、 (1)3;(2)
    【解析】
    分析:(1)由题意得到三角形ADE为等腰直角三角形,在直角三角形DEB中,利用锐角三角函数定义求出DE与BE之比,设出DE与BE,由AB=7求出各自的值,确定出DE即可;
    (2)在直角三角形中,利用勾股定理求出AD与BD的长,根据tanB的值求出cosB的值,确定出BC的长,由BC﹣BD求出CD的长,利用锐角三角函数定义求出所求即可.
    详解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,设DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;
    (2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值为.
    点睛:本题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,等腰直角三角形的判定与性质,熟练掌握各自的性质是解答本题的关键.
    21、(1),补全条形统计图见解析;(2)该校学生对“食品安全知识”非常了解的人数为135人。
    【解析】
    试题分析:
    (1)由统计图中的信息可知,B组学生有32人,占总数的40%,由此可得被抽查学生总人数为:32÷40%=80(人),结合C组学生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A组由12人,由此即可补全条形统计图了;
    (2)由(1)中计算可知,A组有12名学生,占总数的12÷80×100%=15%,结合全校总人数为900可得900×15%=135(人),即全校“非常了解”“食品安全知识”的有135人.
    试题解析:
    (1)由已知条件可得:被抽查学生总数为32÷40%=80(人),
    ∴m%=28÷80×100%=35%,
    ∴m=35,
    A组人数为:80-32-28-8=12(人),
    将图形统计图补充完整如下图所示:

    (2)由题意可得:900×(12÷80×100%)=900×15%=135(人).
    答:全校学生对“食品安全知识”非常了解的人数为135人.
    22、证明见解析
    【解析】
    若要证明∠A=∠E,只需证明△ABC≌△EDB,题中已给了两边对应相等,只需看它们的夹角是否相等,已知给了DE//BC,可得∠ABC=∠BDE,因此利用SAS问题得解.
    【详解】
    ∵DE//BC
    ∴∠ABC=∠BDE
    在△ABC与△EDB中

    ∴△ABC≌△EDB(SAS)
    ∴∠A=∠E
    23、(1);(2)P点坐标为, ;(3) 或或或.
    【解析】
    (1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
    (2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
    (3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
    【详解】
    解:(1)∵A(-1,0),在上,
    ,解得,
    ∴二次函数的解析式为;
    (2)在中,令可得,解得或,
    ,且,
    ∴经过、两点的直线为,
    设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,


    ∴当时,四边形的面积最大,此时P点坐标为,
    ∴四边形的最大面积为;
    (3),
    ∴对称轴为,
    ∴可设点坐标为,
    ,,
    ,,,
    为直角三角形,
    ∴有、和三种情况,
    ①当时,则有,即,解得或,此时点坐标为或;
    ②当时,则有,即,解得,此时点坐标为;
    ③当时,则有,即,解得,此时点坐标为;
    综上可知点的坐标为或或或.
    【点睛】
    本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.
    24、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);
    【解析】
    1)把0(0,0),A(4,4v3)的坐标代入
    y=﹣x2+bx+c,转化为解方程组即可.
    (2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.
    (3)①如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.
    ②如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.
    【详解】
    (1)把O(0,0),A(4,4)的坐标代入y=﹣x2+bx+c,
    得,
    解得,
    ∴抛物线的解析式为y=﹣x2+5x=﹣(x﹣)2+.
    所以抛物线的顶点坐标为(,);
    (2)①由题意B(5,0),A(4,4),
    ∴直线OA的解析式为y=x,AB==7,
    ∵抛物线的对称轴x=,
    ∴P(,).
    如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,

    ∵QC∥OB,
    ∴∠CQB=∠QBO=∠QBC,
    ∴CQ=BC=OB=5,
    ∴四边形BOQC是平行四边形,
    ∵BO=BC,
    ∴四边形BOQC是菱形,
    设Q(m,),
    ∴OQ=OB=5,
    ∴m2+()2=52,
    ∴m=±,
    ∴点Q坐标为(﹣,)或(,);
    ②如图2中,由题意点D在以B为圆心5为半径的⊙B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点H.

    ∵AB=7,BD=5,
    ∴AD=2,D(,),
    ∵OH=HD,
    ∴H(,),
    ∴直线BH的解析式为y=﹣x+,
    当y=时,x=0,
    ∴Q(0,).
    【点睛】
    本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对.

    相关试卷

    2022年天津市重点中学中考数学押题试卷含解析: 这是一份2022年天津市重点中学中考数学押题试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,已知,点A等内容,欢迎下载使用。

    2022年广西岑溪市重点中学中考数学押题试卷含解析: 这是一份2022年广西岑溪市重点中学中考数学押题试卷含解析,共19页。

    2022届湖北利川文斗重点中学中考数学押题试卷含解析: 这是一份2022届湖北利川文斗重点中学中考数学押题试卷含解析,共17页。试卷主要包含了化简的结果是,如图,点A所表示的数的绝对值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map