终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学一轮复习第7章立体几何第1讲空间几何体的结构及其三视图和直观图学案

    立即下载
    加入资料篮
    高考数学一轮复习第7章立体几何第1讲空间几何体的结构及其三视图和直观图学案第1页
    高考数学一轮复习第7章立体几何第1讲空间几何体的结构及其三视图和直观图学案第2页
    高考数学一轮复习第7章立体几何第1讲空间几何体的结构及其三视图和直观图学案第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习第7章立体几何第1讲空间几何体的结构及其三视图和直观图学案

    展开

    这是一份高考数学一轮复习第7章立体几何第1讲空间几何体的结构及其三视图和直观图学案,共10页。

    知识梳理·双基自测
    eq \x(知)eq \x(识)eq \x(梳)eq \x(理)
    知识点一 多面体的结构特征
    知识点二 旋转体的结构特征
    知识点三 三视图与直观图
    eq \x(重)eq \x(要)eq \x(结)eq \x(论)
    1.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度;由此得到:主俯长对正,主左高平齐,俯左宽相等.
    2.一个平面图形在斜二测画法下的直观图与原图形相比,有“三变、三不变”.
    三变:坐标轴的夹角改变,与y轴平行线段的长度改变(减半),图形改变.
    三不变:平行性不变,与x轴平行的线段长度不变,相对位置不变.
    eq \x(双)eq \x(基)eq \x(自)eq \x(测)
    题组一 走出误区
    1.判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )
    (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )
    (3)棱台是由平行于底面的平面截棱锥所得的截面与底面之间的部分.( √ )
    (4)正方体、球、圆锥各自的三视图中,三视图均相同.( × )
    (5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( × )
    (6)菱形的直观图仍是菱形.( × )
    题组二 走进教材
    2.(必修2P19T2)下列说法正确的是( D )
    A.相等的角在直观图中仍然相等
    B.相等的线段在直观图中仍然相等
    C.正方形的直观图是正方形
    D.若两条线段平行,则在直观图中对应的两条线段仍然平行
    [解析] 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行关系不变.
    题组三 走向高考
    3.(2020·新课标Ⅰ卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( C )
    A.eq \f(\r(5)-1,4) B.eq \f(\r(5)-1,2)
    C.eq \f(\r(5)+1,4) D.eq \f(\r(5)+1,2)
    [解析] 如图,设CD=a,PE=b,则PO=eq \r(PE2-OE2)=eq \r(b2-\f(a2,4)),由题意PO2=eq \f(1,2)ab,即b2-eq \f(a2,4)=eq \f(1,2)ab,化简得4eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(b,a)))2-2·eq \f(b,a)-1=0,解得eq \f(b,a)=eq \f(1+\r(5),4)(负值舍去).故选C.
    4.(2017·北京,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( B )
    A.3eq \r(2) B.2eq \r(3)
    C.2eq \r(2) D.2
    [解析] 根据三视图可得该四棱锥的直观图(四棱锥P-ABCD)如图所示,将该四棱锥放入棱长为2的正方体中.由图可知该四棱锥的最长棱为PD,PD=eq \r(22+22+22)=2eq \r(3).故选B.
    5.(2018·全国Ⅰ)某圆柱的高为2,底面周长为16,其三视图如下图,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( B )
    A.2eq \r(17) B.2eq \r(5)
    C.3 D.2
    [解析] 先画出圆柱的直观图,根据题中的三视图可知,点M,N的位置如图①所示.
    圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,
    则图中MN即为M到N的最短路径.
    |ON|=eq \f(1,4)×16=4,|OM|=2,
    ∴|MN|=eq \r(|OM|2+|ON|2)=eq \r(22+42)=2eq \r(5).
    考点突破·互动探究
    考点一 空间几何体的结构特征——自主练透
    例1 (1)(多选题)给出下列四个命题,其中错误命题是( ABCD )
    A.有两个侧面是矩形的棱柱是直棱柱
    B.侧面都是等腰三角形的棱锥是正棱锥
    C.侧面都是矩形的直四棱柱是长方体
    D.若有两个侧面垂直于底面,则该四棱柱为直四棱柱
    (2)下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,所得截面都是圆面,则这个几何体一定是球.
    其中正确结论的序号是_⑤__.
    [解析] (1)认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,例:在如图所示的平行六面体中,ADD1A1及BCC1B1都是矩形,且平面ABB1A1及DCC1D1都与底面ABCD垂直,故A、D错误;将菱形沿一条对角线折起所得三棱锥各面都是等腰三角形,但该棱锥不一定是正棱锥,故B错误;侧面都是矩形但底面为梯形的直四棱柱不是长方体,故C错误.故选A、B、C、D.
    (2)①中这条边若是直角三角形的斜边,则得不到圆锥,①错;②中这条腰若不是垂直于两底的腰,则得到的不是圆台,②错;圆柱、圆锥、圆台的底面都是圆面,③错误;④中如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,④错;只有球满足任意截面都是圆面,⑤正确.
    名师点拨
    空间几何体概念辨析题的常用方法
    (1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.
    (2)反例法:通过反例对结构特征进行辨析.
    考点二 空间几何体的三视图——多维探究
    角度1 由几何体的直观图识别三视图
    例2 (2018·课标Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( A )
    [解析] 由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.
    角度2 由空间几何体的三视图还原直观图
    例3 (2018·北京高考)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( C )
    A.1 B.2
    C.3 D.4
    [解析] 由该四棱锥的三视图,得其直观图如图,由正视图和侧视图都是等腰直角三角形,知PD⊥平面ABCD,所以侧面PAD和PDC都是直角三角形,由俯视图为直角梯形,易知DC⊥平面PAD.又AB∥DC,所以AB⊥平面PAD,所以AB⊥PA,所以侧面PAB也是直角三角形.
    易知PC=2eq \r(2),BC=eq \r(5),PB=3,从而△PBC不是直角三角形,故选C.
    角度3 由三视图的两个视图推测另一视图
    例4 (多选题)(2021·衡水金卷改编)某几何体的正视图与侧视图如图所示,则它的俯视图可能是( ABCD )
    [解析] 若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B、C;若几何体为两个三棱锥的组合体,则俯视图为D;故选A、B、C、D.
    名师点拨
    1.由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.
    2.由几何体的三视图还原几何体的形状,要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象或长方体将三视图还原为实物图.
    常见三视图对应的几何体:
    ①三视图为三个三角形,对应三棱锥;②三视图为两个三角形,一个四边形,对应四棱锥;③三视图为两个三角形,一个圆,对应圆锥;④三视图为一个三角形,两个四边形,对应三棱柱;⑤三视图为两个四边形,一个圆,对应圆柱.
    3.由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,再找其剩下部分三视图的可能形式,当然作为选择题,也可将选项逐项检验,看看给出的部分三视图是否符合.
    〔变式训练1〕
    (1)(角度1)(2020·陕西省咸阳市三模)“牟合方盖”是我国古代数学家刘徽在研究球的体积过程中构造在一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖),其直观图如图所示,图中四边形是体现其直观性所做的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别是( A )
    A.a,b B.a,c
    C.a,d D.b,d
    (2)(角度2)(2021·温州模拟)若某几何体的三视图如图所示,则此几何体的直观图是( A )
    (3)(角度3)(多选题)(2021·四川成都三诊改编)如图是某几何体的正视图和侧视图,则该几何体的俯视图可能是( BCD )
    [解析] (1)因为相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).所以其正视图和侧视图是一个圆;若俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,则俯视图是有2条对角线且为实线的正方形.故选A.
    (2)利用排除法求解.B的侧视图不对.C图的俯视图不对,D的正视图不对,排除B,C,D,A正确,故选A.
    (3)若俯视图为A,则正视图不符,A错误,B、C、D正确.
    考点三 空间几何体的直观图——师生共研
    例5 (2021·宁夏石嘴山三中模拟)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( D )
    A.eq \f(\r(3),4)a2 B.eq \f(\r(3),8)a2
    C.eq \f(\r(6),8)a2 D.eq \f(\r(6),16)a2
    [解析] 如图①、②所示的实际图形和直观图.
    由②可知,A′B′=AB=a,O′C′=eq \f(1,2)OC=eq \f(\r(3),4)a,在图②中作C′D′⊥A′B′于D′,
    则C′D′=eq \f(\r(2),2)O′C′=eq \f(\r(6),8)a.
    ∴S△A′B′C′=eq \f(1,2)A′B′·C′D′=eq \f(1,2)×a×eq \f(\r(6),8)a=eq \f(\r(6),16)a2.
    [引申]若已知△ABC的平面直观图△A1B1C1是边长为a的正三角形,则原△ABC的面积为_eq \f(\r(6),2)a2__.
    [解析] 在△A1D1C1中,由正弦定理eq \f(a,sin 45°)=eq \f(x,sin 120°),得x=eq \f(\r(6),2)a,
    ∴S△ABC=eq \f(1,2)×a×eq \r(6)a=eq \f(\r(6),2)a2.
    名师点拨
    1.在斜二测画法中,要确定关键点及关键线段的位置,注意“三变”与“三不变”;平面图形的直观图,其面积与原图形的面积的关系是S直观图=eq \f(\r(2),4)S原图形.
    2.在原图形中与x轴或y轴平行的线段,在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.
    〔变式训练2〕
    一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于( B )
    A.eq \f(\r(2),4)a2 B.2eq \r(2)a2
    C.eq \f(\r(2),2)a2 D.eq \f(2\r(2),3)a2
    [解析] 由题意可知原平行四边形一边长为a,此边上的高为2eq \r(2)a,故其面积为2eq \r(2)a2.故选B.
    名师讲坛·素养提升
    三视图识图不准致误
    例6 (2020·福建福州模拟)如图为一圆柱切削后的几何体及其正视图,则相应的侧视图可以是( B )
    [错因分析] (1)不能正确把握投影方向致误;(2)不能正确判定上表面椭圆投影形状致误;(3)不能正确判定投影线的虚实致误.
    [解析] 圆柱被不平行于底面的平面所截得的截面为椭圆,结合正视图,可知侧视图最高点在中间,故选B.
    名师点拨
    对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,再画其三视图.另外要注意交线的位置,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线,即一定要分清可见轮廓线与不可见轮廓线,避免出现错误.
    〔变式训练3〕
    (2019·河南省濮阳市模拟改编)设四面体ABCD各棱长均相等,S为AD的中点,Q为BC上异于中点和端点的任一点,则△SQD在四面体的面上的射影可能是( BCD )
    [解析] 设BC的中点为P,则由题意可知DP⊥BC且平面ADP⊥平面BDC,从而S在平面BCD上的射影在DP上,△SQD在面BCD上的射影为C,同理△SQD在面ABC、面ACD上的射影分别为B、D,故选B、C、D.
    名称
    棱柱
    棱锥
    棱台
    图形
    结构
    特征
    ①有两个面互相平行且全等,其余各面都是_四边形__.
    ②每相邻两个四边形的公共边都互相_平行__
    有一个面是_多边形__,其余各面都是有一个公共顶点的_三角形__的多面体
    用一个平行于棱锥底面的平面去截棱锥,_截面__和
    _底面__之间的部分
    侧棱
    _平行且相等__
    相交于_一点__但不一定相等
    延长线交于_一点__
    侧面
    形状
    _平行四边形__
    _三角形__
    _梯形__
    名称
    圆柱
    圆锥
    圆台

    图形
    母线
    互相平行且相等,_垂直__于底面
    相交于_一点__
    延长线交于_一点__
    轴截面
    全等的_矩形__
    全等的_等腰三角形__
    全等的_等腰梯形__
    _圆__
    侧面展
    开图
    _矩形__
    _扇形__
    _扇环__
    三视图
    三视图包括_正(主)视图__、_侧(左)视图__、_俯视图__
    画法规则:长对正、高平齐、宽相等
    直观图
    斜二测面法:(1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为_45°或135°__,z′轴与x′轴和y′轴所在平面_垂直__.
    (2)原图形中平行于坐标轴的线段在直观图中仍平行于坐标轴,平行于x轴和z轴的线段在直观图中保持原长度_不变__,平行于y轴的线段在直观图中长度为_原来的一半__.

    相关学案

    空间几何体的结构及其三视图、直观图导学案-2024届高三一轮复习:

    这是一份空间几何体的结构及其三视图、直观图导学案-2024届高三一轮复习,共6页。学案主要包含了学习目标,相关知识回顾,考点精讲精练等内容,欢迎下载使用。

    高考数学统考一轮复习第8章8.1空间几何体的结构及其三视图和直观图学案:

    这是一份高考数学统考一轮复习第8章8.1空间几何体的结构及其三视图和直观图学案,共11页。学案主要包含了知识重温,小题热身等内容,欢迎下载使用。

    高考数学(理数)一轮复习学案8.1《空间几何体的结构、三视图和直观图》(含详解):

    这是一份高考数学(理数)一轮复习学案8.1《空间几何体的结构、三视图和直观图》(含详解),共9页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map