终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2017-2021年广东中考数学真题分类汇编之统计与概率

    立即下载
    加入资料篮
    2017-2021年广东中考数学真题分类汇编之统计与概率第1页
    2017-2021年广东中考数学真题分类汇编之统计与概率第2页
    2017-2021年广东中考数学真题分类汇编之统计与概率第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2017-2021年广东中考数学真题分类汇编之统计与概率

    展开

    这是一份2017-2021年广东中考数学真题分类汇编之统计与概率,共24页。
    2017-2021年广东中考数学真题分类汇编之统计与概率
    一.选择题(共11小题)
    1.(2018•广州)甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是(  )
    A. B. C. D.
    2.(2018•广东)数据1、5、7、4、8的中位数是(  )
    A.4 B.5 C.6 D.7
    3.(2019•深圳)这组数据20,21,22,23,23的中位数和众数分别是(  )
    A.20,23 B.21,23 C.21,22 D.22,23
    4.(2019•广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是(  )
    A.5 B.5.2 C.6 D.6.4
    5.(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是(  )
    A.253,253 B.255,253 C.253,247 D.255,247
    6.(2020•广东)一组数据2,4,3,5,2的中位数是(  )
    A.5 B.3.5 C.3 D.2.5
    7.(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是(  )
    A.85,10 B.85,5 C.80,85 D.80,10
    8.(2020•广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是(  )

    A.套餐一 B.套餐二 C.套餐三 D.套餐四
    9.(2021•深圳)《你好,李焕英》的票房数据是:109,133,120,118,124,那么这组数据的中位数是(  )
    A.124 B.120 C.118 D.109
    10.(2021•广州)为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为(  )
    A. B. C. D.
    11.(2021•广东)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是(  )
    A. B. C. D.
    二.填空题(共5小题)
    12.(2020•深圳)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是   .
    13.(2019•深圳)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是   .
    14.(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:   .
    15.(2017•深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是   .
    16.(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是   .
    三.解答题(共6小题)
    17.(2021•广州)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:
    3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4
    根据以上数据,得到如下不完整的频数分布表:
    次数
    1
    2
    3
    4
    5
    6
    人数
    1
    2
    a
    6
    b
    2
    (1)表格中的a=   ,b=   ;
    (2)在这次调查中,参加志愿者活动的次数的众数为    ,中位数为    ;
    (3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.
    18.(2020•广州)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:
    甲社区
    67
    68
    73
    75
    76
    78
    80
    82
    83
    84
    85
    85
    90
    92
    95
    乙社区
    66
    69
    72
    74
    75
    78
    80
    81
    85
    85
    88
    89
    91
    96
    98
    根据以上信息解答下列问题:
    (1)求甲社区老人年龄的中位数和众数;
    (2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.
    19.(2020•广东)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:
    等级
    非常了解
    比较了解
    基本了解
    不太了解
    人数(人)
    24
    72
    18
    x
    (1)求x的值;
    (2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?
    20.(2020•深圳)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.

    请根据统计图提供的信息,解答下列问题.
    (1)m=   ,n=   .
    (2)请补全条形统计图;
    (3)在扇形统计图中,“软件”所对应的扇形的圆心角是   度;
    (4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有   名.
    21.(2021•深圳)随机调查某城市30天空气质量指数(AQI),绘制成扇形统计图.
    空气质量等级
    空气质量指数(AQI)
    频数

    AQI≤50
    m

    50<AQI≤100
    15

    100<AQI≤150
    9

    AQI>150
    n
    (1)m=   ,n=   ;
    (2)求良的占比;
    (3)求差的圆心角;
    (4)折线图是一个月内的空气污染指数统计,然后根据这一个月内的统计进行估测一年的空气污染指数为中的天数,从折线图可以得到空气污染指数为中的有9天.
    根据折线统计图,一个月(30天)中有    天AQI为中,估测该城市一年(以360天计)中大约有    天AQI为中.

    22.(2019•深圳)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.

    (1)这次共抽取   名学生进行调查,扇形统计图中的x=   ;
    (2)请补全统计图;
    (3)在扇形统计图中“扬琴”所对扇形的圆心角是   度;
    (4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有   名.

    2017-2021年广东中考数学真题分类汇编之统计与概率
    参考答案与试题解析
    一.选择题(共11小题)
    1.(2018•广州)甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是(  )
    A. B. C. D.
    【考点】列表法与树状图法.版权所有
    【专题】常规题型.
    【分析】直接根据题意画出树状图,再利用概率公式求出答案.
    【解答】解:如图所示:

    一共有4种可能,取出的两个小球上都写有数字2的有1种情况,
    故取出的两个小球上都写有数字2的概率是:.
    故选:C.
    【点评】此题主要考查了树状图法求概率,正确得出所有的结果是解题关键.
    2.(2018•广东)数据1、5、7、4、8的中位数是(  )
    A.4 B.5 C.6 D.7
    【考点】中位数.版权所有
    【专题】统计的应用.
    【分析】根据中位数的定义判断即可;
    【解答】解:将数据重新排列为1、4、5、7、8,
    则这组数据的中位数为5
    故选:B.
    【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
    3.(2019•深圳)这组数据20,21,22,23,23的中位数和众数分别是(  )
    A.20,23 B.21,23 C.21,22 D.22,23
    【考点】众数;中位数.版权所有
    【专题】数据的收集与整理.
    【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.
    【解答】解:这组数据排序后为20,21,22,23,23,
    ∴中位数和众数分别是22,23,
    故选:D.
    【点评】本题主要考查了中位数以及众数,中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现.
    4.(2019•广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是(  )
    A.5 B.5.2 C.6 D.6.4
    【考点】众数.版权所有
    【专题】统计的应用.
    【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5
    故选:A.
    【点评】本题主要考查众数的定义,是需要熟练掌握的概念.
    5.(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是(  )
    A.253,253 B.255,253 C.253,247 D.255,247
    【考点】中位数;算术平均数.版权所有
    【专题】数据的收集与整理;统计的应用;数据分析观念;运算能力.
    【分析】根据中位数、众数的计算方法,分别求出结果即可.
    【解答】解:=(247+253+247+255+263)÷5=253,
    这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;
    故选:A.
    【点评】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.
    6.(2020•广东)一组数据2,4,3,5,2的中位数是(  )
    A.5 B.3.5 C.3 D.2.5
    【考点】中位数.版权所有
    【专题】统计的应用;数据分析观念;运算能力.
    【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.
    【解答】解:将数据由小到大排列得:2,2,3,4,5,
    ∵数据个数为奇数,最中间的数是3,
    ∴这组数据的中位数是3.
    故选:C.
    【点评】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.
    7.(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是(  )
    A.85,10 B.85,5 C.80,85 D.80,10
    【考点】极差;众数.版权所有
    【专题】常规题型.
    【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.
    【解答】解:众数为85,
    极差:85﹣75=10,
    故选:A.
    【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.
    8.(2020•广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是(  )

    A.套餐一 B.套餐二 C.套餐三 D.套餐四
    【考点】条形统计图.版权所有
    【专题】统计的应用;数据分析观念.
    【分析】根据条形统计图得出即可.
    【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,
    故选:A.
    【点评】本题考查了条形统计图,能根据图形得出正确的信息是解此题的关键.
    9.(2021•深圳)《你好,李焕英》的票房数据是:109,133,120,118,124,那么这组数据的中位数是(  )
    A.124 B.120 C.118 D.109
    【考点】中位数.版权所有
    【专题】统计的应用;数据分析观念.
    【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
    【解答】解:将这组数据按照从小到大的顺序排列:109、118、120、124、133,处于最中间位置的一个数是120,那么由中位数的定义可知,这组数据的中位数是120.
    故选:B.
    【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
    10.(2021•广州)为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为(  )
    A. B. C. D.
    【考点】列表法与树状图法.版权所有
    【专题】概率及其应用;数据分析观念;推理能力.
    【分析】画树状图,共有12种等可能的结果,恰好抽到2名女学生的结果有6种,再由概率公式求解即可.
    【解答】解:画树状图如图:

    共有12种等可能的结果,恰好抽到2名女学生的结果有6种,
    ∴恰好抽到2名女学生的概率为=,
    故选:B.
    【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    11.(2021•广东)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是(  )
    A. B. C. D.
    【考点】列表法与树状图法.版权所有
    【专题】概率及其应用;数据分析观念;推理能力.
    【分析】画树状图,共有36种等可能的结果,其中两枚骰子向上的点数之和为7的结果有6种,再由概率公式求解即可.
    【解答】解:画树状图为:

    共有36种等可能的结果,其中两枚骰子向上的点数之和为7的结果有6种,
    ∴两枚骰子向上的点数之和为7的概率为=,
    故选:B.
    【点评】本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比值.
    二.填空题(共5小题)
    12.(2020•深圳)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是  .
    【考点】概率公式.版权所有
    【专题】概率及其应用;数据分析观念.
    【分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.
    【解答】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,
    ∴摸出编号为偶数的球的概率为,
    故答案为:.
    【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
    13.(2019•深圳)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是  .
    【考点】概率公式.版权所有
    【专题】概率及其应用.
    【分析】直接利用概率公式计算进而得出答案.
    【解答】解:∵现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,
    ∴将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是:.
    故答案为:.
    【点评】此题主要考查了概率公式,正确掌握计算公式是解题关键.
    14.(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:  .
    【考点】概率公式.版权所有
    【专题】推理填空题;运算能力.
    【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.
    【解答】解:一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,
    故答案为:.
    【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.
    15.(2017•深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是  .
    【考点】列表法与树状图法.版权所有
    【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.
    【解答】解:依题意画树状图得:

    ∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,
    ∴所摸到的球恰好为1黑1白的概率是:=.
    故答案为:.
    【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.解题时注意:概率=所求情况数与总情况数之比.
    16.(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是  .
    【考点】概率公式.版权所有
    【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.
    【解答】解:∵5个小球中,标号为偶数的有2、4这2个,
    ∴摸出的小球标号为偶数的概率是,
    故答案为:
    【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
    三.解答题(共6小题)
    17.(2021•广州)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:
    3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4
    根据以上数据,得到如下不完整的频数分布表:
    次数
    1
    2
    3
    4
    5
    6
    人数
    1
    2
    a
    6
    b
    2
    (1)表格中的a= 4 ,b= 5 ;
    (2)在这次调查中,参加志愿者活动的次数的众数为  4 ,中位数为  4 ;
    (3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.
    【考点】众数;用样本估计总体;频数(率)分布表;中位数.版权所有
    【专题】统计的应用;数据分析观念.
    【分析】(1)由题中的数据即可求解;
    (2)根据中位数、众数的定义,即可解答;
    (3)根据样本估计总体,即可解答.
    【解答】解:(1)由该20名学生参加志愿者活动的次数得:a=4,b=5,
    故答案为:4,5;
    (2)该20名学生参加志愿者活动的次数从小到大排列如下:
    1,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,
    ∵4出现的最多,有6次,
    ∴众数为4,中位数为第10,第11个数的平均数=4,
    故答案为:4,4;
    (3)300×=90(人).
    答:估计该校初三年级学生参加志愿者活动的次数为4次的人数有90人.
    【点评】此题考查了频数分布表,众数、中位数,样本估计总体,掌握众数、中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数.
    18.(2020•广州)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:
    甲社区
    67
    68
    73
    75
    76
    78
    80
    82
    83
    84
    85
    85
    90
    92
    95
    乙社区
    66
    69
    72
    74
    75
    78
    80
    81
    85
    85
    88
    89
    91
    96
    98
    根据以上信息解答下列问题:
    (1)求甲社区老人年龄的中位数和众数;
    (2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.
    【考点】列表法与树状图法;中位数;众数.版权所有
    【专题】数据的收集与整理;统计的应用;概率及其应用;运算能力;模型思想;应用意识.
    【分析】(1)根据中位数、众数的意义和计算方法分别求出结果即可;
    (2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.
    【解答】解:(1)甲社区:这15位老人年龄从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁,
    在这组数据中出现次数最多的是85岁,因此众数是85岁;
    (2)年龄小于70岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:

    共有12种可能出现的结果,其中“同一个社区”的有4种,
    ∴P(来自同一个社区)==.
    【点评】本题考查中位数、众数的意义和计算方法,列表法求随机事件发生的概率,列举出所有可能出现的结果是求出概率的关键.
    19.(2020•广东)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:
    等级
    非常了解
    比较了解
    基本了解
    不太了解
    人数(人)
    24
    72
    18
    x
    (1)求x的值;
    (2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?
    【考点】用样本估计总体.版权所有
    【专题】统计的应用;数据分析观念.
    【分析】(1)根据四个等级的人数之和为120求出x的值;
    (2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.
    【解答】解:(1)x=120﹣(24+72+18)=6;
    (2)1800×=1440(人),
    答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.
    【点评】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
    20.(2020•深圳)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.

    请根据统计图提供的信息,解答下列问题.
    (1)m= 50 ,n= 10 .
    (2)请补全条形统计图;
    (3)在扇形统计图中,“软件”所对应的扇形的圆心角是 72 度;
    (4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有 180 名.
    【考点】条形统计图;用样本估计总体;扇形统计图.版权所有
    【专题】统计与概率;数据分析观念.
    【分析】(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;
    (2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;
    (3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;
    (4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.
    【解答】解:(1)m=15÷30%=50,
    n%=5÷50×100%=10%,
    故答案为:50,10;
    (2)硬件专业的毕业生有:50×40%=20(人),
    补全的条形统计图如右图所示;
    (3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,
    故答案为:72;
    (4)600×30%=180(名),
    即估计“总线”专业的毕业生有180名,
    故答案为:180.

    【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
    21.(2021•深圳)随机调查某城市30天空气质量指数(AQI),绘制成扇形统计图.
    空气质量等级
    空气质量指数(AQI)
    频数

    AQI≤50
    m

    50<AQI≤100
    15

    100<AQI≤150
    9

    AQI>150
    n
    (1)m= 4 ,n= 2 ;
    (2)求良的占比;
    (3)求差的圆心角;
    (4)折线图是一个月内的空气污染指数统计,然后根据这一个月内的统计进行估测一年的空气污染指数为中的天数,从折线图可以得到空气污染指数为中的有9天.
    根据折线统计图,一个月(30天)中有  9 天AQI为中,估测该城市一年(以360天计)中大约有  108 天AQI为中.

    【考点】频数(率)分布折线图;扇形统计图;折线统计图;用样本估计总体;频数(率)分布表.版权所有
    【专题】数据的收集与整理;数据分析观念;运算能力.
    【分析】(1)根据扇形统计图中优的圆心角度数即可求出m的值,再用总数减去优、良、中的天数即可求出n的值;
    (2)频率就是频数除以总数,所以用表中良的天数除以总数即可;
    (3)用差的占比乘以360度即可;
    (4)要先算出样本中有9天AQI为中,再估测该城市一年(以360天计)中大约有108天AQI为中.
    【解答】解:(1)根据题意,得m=×30=4,
    所以n=30﹣4﹣15﹣9=2,
    故答案为:4,2;
    (2)良的占比=×100%=50%;
    (3)差的圆心角=×360°=24°;
    (4)根据折线图,一个月(30天)中有9天AQI为中,估测该城市一年(以360天计)中大约有360×=108(天)AQI为中.
    故答案为:9,108.
    【点评】本题是一道利用统计知识解答实际问题的重点考题,主要考查利用统计图表,处理数据的能力和利用样本估计总体的思想.解答这类题目,观察图表要细致,对应的图例及其关系不能错位,计算要认真准确.
    22.(2019•深圳)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.

    (1)这次共抽取 200 名学生进行调查,扇形统计图中的x= 15% ;
    (2)请补全统计图;
    (3)在扇形统计图中“扬琴”所对扇形的圆心角是 36 度;
    (4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 900 名.
    【考点】条形统计图;用样本估计总体;扇形统计图.版权所有
    【专题】统计的应用.
    【分析】(1)依据喜爱古筝的人数数据,即可得到调查的学生人数,根据喜欢竹笛的学生数占总人数的百分比即可得到结论;
    (2)求二胡的学生数,即可将条形统计图补充完整;
    (3)依据“扬琴”的百分比,即可得到“扬琴”所占圆心角的度数;
    (4)依据喜爱“二胡”的学生所占的百分比,即可得到该校最喜爱“二胡”的学生数量.
    【解答】解:(1)80÷40%=200,x=×100%=15%,
    故答案为:200;15%;
    (2)喜欢二胡的学生数为200﹣80﹣30﹣20﹣10=60,
    补全统计图如图所示,


    (3)扇形统计图中“扬琴”所对扇形的圆心角是:360°×=36°,
    故答案为:36;
    (4)3000×=900(名),
    答:该校喜爱“二胡”的学生约有900名.
    故答案为:900.
    【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.

    考点卡片
    1.用样本估计总体
    用样本估计总体是统计的基本思想.
    1、用样本的频率分布估计总体分布:
    从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
    2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).
    一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
    2.频数(率)分布表
    1、在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.
    2、列频率分布表的步骤:
      (1)计算极差,即计算最大值与最小值的差.
      (2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).
      (3)将数据分组.
      (4)列频率分布表.
    3.频数(率)分布折线图
    一般利用直方图画频数分布折线图,在频数分布直方图中,把每个小长方形上面的一条边的中点顺次连接起来,得到频数折线图.
    注意:折线图要与横轴相交,方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到假想组中点,它主要显示数据的变化趋势.
    4.扇形统计图
    (1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    (2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.
    (3)制作扇形图的步骤
    ①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°.  ②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;
    ④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.
    5.条形统计图
    (1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.
    (2)特点:从条形图可以很容易看出数据的大小,便于比较.
    (3)制作条形图的一般步骤:
    ①根据图纸的大小,画出两条互相垂直的射线.
    ②在水平射线上,适当分配条形的位置,确定直条的宽度和间隔.
    ③在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少.
    ④按照数据大小,画出长短不同的直条,并注明数量.
    6.折线统计图
    (1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
    (2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
    (3)绘制折线图的步骤
    ①根据统计资料整理数据.
    ②先画纵轴,后画横轴,纵、横都要有单位,按纸面的大小来确定用一定单位表示一定的数量.  ③根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来.
    7.算术平均数
    (1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
    (2)算术平均数:对于n个数x1,x2,…,xn,则=(x1+x2+…+xn)就叫做这n个数的算术平均数.
    (3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
    8.中位数
    (1)中位数:
    将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
    如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    (2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
    (3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
    9.众数
    (1)一组数据中出现次数最多的数据叫做众数.
    (2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
    (3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..
    10.极差
    (1)极差是指一组数据中最大数据与最小数据的差.
    极差=最大值﹣最小值.
    (2)极差是刻画数据离散程度的一个统计量.它只能反映数据的波动范围,不能衡量每个数据的变化情况.
    (3)极差的优势在于计算简单,但它受极端值的影响较大.
    11.概率公式
    (1)随机事件A的概率P(A)=.
    (2)P(必然事件)=1.
    (3)P(不可能事件)=0.
    12.列表法与树状图法
    (1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
    (2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
    (3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
    (4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
    (5)当有两个元素时,可用树形图列举,也可以列表列举.

    相关试卷

    2017-2021年江苏中考数学真题分类汇编之统计与概率:

    这是一份2017-2021年江苏中考数学真题分类汇编之统计与概率,共31页。

    2017-2021年山东中考数学真题分类汇编之统计与概率:

    这是一份2017-2021年山东中考数学真题分类汇编之统计与概率,共32页。

    2017-2021年四川中考数学真题分类汇编之统计与概率:

    这是一份2017-2021年四川中考数学真题分类汇编之统计与概率,共29页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map