年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年江西省萍乡市重点名校中考数学模拟预测试卷含解析

    立即下载
    加入资料篮
    2022年江西省萍乡市重点名校中考数学模拟预测试卷含解析第1页
    2022年江西省萍乡市重点名校中考数学模拟预测试卷含解析第2页
    2022年江西省萍乡市重点名校中考数学模拟预测试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江西省萍乡市重点名校中考数学模拟预测试卷含解析

    展开

    这是一份2022年江西省萍乡市重点名校中考数学模拟预测试卷含解析,共22页。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是(  )

    A.y1 B.y2 C.y3 D.y4
    2.在﹣3,0,4,这四个数中,最大的数是( )
    A.﹣3 B.0 C.4 D.
    3.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
    A. B. C. D.
    4.多项式ax2﹣4ax﹣12a因式分解正确的是( )
    A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)
    5.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是(  )
    A.3,-1 B.1,-3 C.-3,1 D.-1,3
    6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是(  )
    A.m<﹣1 B.m<1 C.m>﹣1 D.m>1
    7.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是(  )

    A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4
    8.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为(  )

    A. B. C. D.
    9.如果m的倒数是﹣1,那么m2018等于(  )
    A.1 B.﹣1 C.2018 D.﹣2018
    10.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为(  )

    A.6 B.7 C.8 D.10
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______

    12.在中,若,则的度数是______.
    13.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______ 人.

    14.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为_____.

    15.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段 的长为________.

    16.等腰中,是BC边上的高,且,则等腰底角的度数为__________.
    17.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.
    如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.
    19.(5分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:
    气温x(℃)
    0
    5
    10
    15
    20
    音速y(m/s)
    331
    334
    337
    340
    343
    (1)求y与x之间的函数关系式:
    (2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?
    20.(8分)如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
    (1)当CM:CB=1:4时,求CF的长.
    (2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
    (3)当△ABM∽△EFN时,求CM的长.

    21.(10分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
    (1)求证:四边形OCAD是平行四边形;
    (2)填空:①当∠B= 时,四边形OCAD是菱形;
    ②当∠B= 时,AD与相切.

    22.(10分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.

    23.(12分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.
    (1)求证:CF=DF;
    (2)连接OF,若AB=10,BC=6,求线段OF的长.

    24.(14分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.

    平均分(分)
    中位数(分)
    众数(分)
    方差(分2)
    初中部
    a
    85
    b
    s初中2
    高中部
    85
    c
    100
    160
    (1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    由图象的点的坐标,根据待定系数法求得解析式即可判定.
    【详解】
    由图象可知:
    抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;
    抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;
    抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;
    抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;
    综上,解析式中的二次项系数一定小于1的是y1
    故选A.
    【点睛】
    本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.
    2、C
    【解析】
    试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,
    在﹣3,0,1,这四个数中,﹣3<0<<1,最大的数是1.故选C.
    3、D
    【解析】
    先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
    【详解】
    随机掷一枚均匀的硬币两次,落地后情况如下:

    至少有一次正面朝上的概率是,
    故选:D.
    【点睛】
    本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    4、A
    【解析】
    试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.
    解:ax2﹣4ax﹣12a
    =a(x2﹣4x﹣12)
    =a(x﹣6)(x+2).
    故答案为a(x﹣6)(x+2).
    点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.
    5、A
    【解析】
    根据题意可得方程组,再解方程组即可.
    【详解】
    由题意得:,
    解得:,
    故选A.
    6、B
    【解析】
    根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.
    【详解】
    ∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
    ∴△=(-2)2-4m=4-4m>0,
    解得:m<1.
    故选B.
    【点睛】
    本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.
    7、D
    【解析】
    由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
    【详解】
    解:∵△OAB绕O点逆时针旋转60°得到△OCD,
    ∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
    则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
    ∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
    故选D.
    【点睛】
    本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
    8、D
    【解析】
    连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.
    【详解】
    解:如图,连接OC、OD、BD,

    ∵点C、D是半圆O的三等分点,
    ∴,
    ∴∠AOC=∠COD=∠DOB=60°,
    ∵OC=OD,
    ∴△COD是等边三角形,
    ∴OC=OD=CD,
    ∵,
    ∴,
    ∵OB=OD,
    ∴△BOD是等边三角形,则∠ODB=60°,
    ∴∠ODB=∠COD=60°,
    ∴OC∥BD,
    ∴,
    ∴S阴影=S扇形OBD,
    S半圆O,
    飞镖落在阴影区域的概率,
    故选:D.
    【点睛】
    本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.
    9、A
    【解析】
    因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是﹣1,则m=-1,
    然后再代入m2018计算即可.
    【详解】
    因为m的倒数是﹣1,
    所以m=-1,
    所以m2018=(-1)2018=1,故选A.
    【点睛】
    本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.
    10、C
    【解析】
    ∵∠ACB=90°,D为AB的中点,AB=6,
    ∴CD=AB=1.
    又CE=CD,
    ∴CE=1,
    ∴ED=CE+CD=2.
    又∵BF∥DE,点D是AB的中点,
    ∴ED是△AFB的中位线,
    ∴BF=2ED=3.
    故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、-12
    【解析】
    过E点作EF⊥OC于F,如图所示:

    由条件可知:OE=OA=5,,
    所以EF=3,OF=4,
    则E点坐标为(-4,3)
    设反比例函数的解析式是y=,
    则有k=-4×3=-12.
    故答案是:-12.
    12、
    【解析】
    先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.
    【详解】
    在中,,
    ,,
    ,,

    故答案为:.
    【点睛】
    本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.
    13、35
    【解析】
    分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.
    详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),
    则本次捐款20元的有:80−(20+10+15)=35(人),
    故答案为:35.
    点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.
    14、﹣1
    【解析】
    根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.
    【详解】
    解:∵A(﹣3,4),
    ∴OC==5,
    ∴CB=OC=5,
    则点B的横坐标为﹣3﹣5=﹣8,
    故B的坐标为:(﹣8,4),
    将点B的坐标代入y=得,4=,
    解得:k=﹣1.
    故答案为:﹣1.
    15、
    【解析】
    已知BC=8, AD是中线,可得CD=4, 在△CBA和△CAD中, 由∠B=∠DAC,∠C=∠C, 可判定△CBA∽△CAD,根据相似三角形的性质可得 , 即可得AC2=CD•BC=4×8=32,解得AC=4.
    16、,,
    【解析】
    分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.
    【详解】
    ①如图,若点A是顶角顶点时,

    ∵AB=AC,AD⊥BC,
    ∴BD=CD,∵,
    ∴AD=BD=CD,
    在Rt△ABD中,∠B=∠BAD=

    ②如图,若点A是底角顶点,且AD在△ABC外部时,

    ∵,AC=BC,
    ∴,
    ∴∠ACD=30°,
    ∴∠BAC=∠ABC=×30°=15°;
    ③如图,若点A是底角顶点,且AD在△ABC内部时,

    ∵,AC=BC,
    ∴,
    ∴∠C=30°,
    ∴∠BAC=∠ABC=(180°-30°)=75°;
    综上所述,△ABC底角的度数为45°或15°或75°;
    故答案为,,.
    【点睛】
    本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.
    17、8
    【解析】
    根据反比例函数的性质结合点的坐标利用勾股定理解答.
    【详解】
    解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x<0)中,得k=8.
    给答案为:8.
    【点睛】
    此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且
    【解析】
    (1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;
    (2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;
    ②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;
    (3)由CE=CD,可得BC= CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且.
    【详解】
    (1)解:∵直线l与以BC为直径的圆O相切于点C.
    ∴∠BCE=90°,
    又∵BC为直径,
    ∴∠BFC=∠CFE=90°,
    ∵∠FEC=∠CEB,
    ∴△CEF∽△BEC,
    ∴,
    ∵BE=15,CE=9,
    即:,
    解得:EF= ;
    (2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,
    ∴∠ABF=∠FCD,
    同理:∠AFB=∠CFD,
    ∴△CDF∽△BAF;
    ②∵△CDF∽△BAF,
    ∴,
    又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,
    ∴△CEF∽△BCF,
    ∴,
    ∴,
    又∵AB=BC,
    ∴CE=CD;
    (3)解:∵CE=CD,
    ∴BC=CD=CE,
    在Rt△BCE中,tan∠CBE=,
    ∴∠CBE=30°,
    故 为60°,
    ∴F在直径BC下方的圆弧上,且.

    【点睛】
    考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.
    19、 (1) y=x+331;(2)1724m.
    【解析】
    (1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.
    【详解】
    解:(1)设y=kx+b,∴
    ∴k=,
    ∴y=x+331.
    (2)当x=23时,y= x23+331=344.8
    ∴5344.8=1724.
    ∴此人与烟花燃放地相距约1724m.
    【点睛】
    此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.
    20、 (1) CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.
    【解析】
    (1)如图1中,作AH⊥BC于H.首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;
    (2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM•EB,由此构建函数关系式即可解决问题;
    (3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.想办法证明CM=CN,MN=DN+HM即可解决问题;
    【详解】
    解:(1)如图1中,作AH⊥BC于H.

    ∵CD⊥BC,AD∥BC,
    ∴∠BCD=∠D=∠AHC=90°,
    ∴四边形AHCD是矩形,
    ∵AD=DC=1,
    ∴四边形AHCD是正方形,
    ∴AH=CH=CD=1,
    ∵∠B=45°,
    ∴AH=BH=1,BC=2,
    ∵CM=BC=,CM∥AD,
    ∴=,
    ∴=,
    ∴CF=1.
    (2)如图1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,
    ∵∠AEM=∠AEB,∠EAM=∠B,
    ∴△EAM∽△EBA,
    ∴=,
    ∴AE2=EM•EB,
    ∴1+(1+y)2=(x+y)(y+2),
    ∴y=,
    ∵2﹣2x≥0,
    ∴0≤x≤1.
    (3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.

    则△ADN≌△AHG,△MAN≌△MAG,
    ∴MN=MG=HM+GH=HM+DN,
    ∵△ABM∽△EFN,
    ∴∠EFN=∠B=45°,
    ∴CF=CE,
    ∵四边形AHCD是正方形,
    ∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,
    ∴△AHE≌△ADF,
    ∴∠AEH=∠AFD,
    ∵∠AEH=∠DAN,∠AFD=∠HAM,
    ∴∠HAM=∠DAN,
    ∴△ADN≌△AHM,
    ∴DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,
    ∴x+x=1,
    ∴x=﹣1,
    ∴CM=2﹣.
    【点睛】
    本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明△EAM∽△EBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.
    21、(1)证明见解析;(2)① 30°,② 45°
    【解析】
    试题分析:(1)根据已知条件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论;
    (2)①若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出∠即可求得
    ②AD与相切,根据切线的性质得出根据AD∥OC,内错角相等得出从而求得
    试题解析:(方法不唯一)
    (1)∵OA=OC,AD=OC,
    ∴OA=AD,
    ∴∠OAC=∠OCA,∠AOD=∠ADO,
    ∵OD∥AC,
    ∴∠OAC=∠AOD,
    ∴∠OAC=∠OCA=∠AOD=∠ADO,
    ∴∠AOC=∠OAD,
    ∴OC∥AD,
    ∴四边形OCAD是平行四边形;
    (2)①∵四边形OCAD是菱形,
    ∴OC=AC,
    又∵OC=OA,
    ∴OC=OA=AC,


    故答案为
    ②∵AD与相切,

    ∵AD∥OC,


    故答案为
    22、(1);(2)1.
    【解析】
    (1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;
    (2)根据EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根据S=x(12﹣x)=﹣(x﹣6)2+1,可得当x=6时,S有最大值为1.
    【详解】
    解:(1)∵△AEF∽△ABC,
    ∴,
    ∵边BC长为18,高AD长为12,
    ∴=;
    (2)∵EH=KD=x,
    ∴AK=12﹣x,EF=(12﹣x),
    ∴S=x(12﹣x)=﹣(x﹣6)2+1.
    当x=6时,S有最大值为1.
    【点睛】
    本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.
    23、(1)详见解析;(2)OF=.
    【解析】
    (1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;
    (2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.
    【详解】
    (1)证明:连接OC,如图,

    ∵CF为切线,
    ∴OC⊥CF,
    ∴∠1+∠3=90°,
    ∵BM⊥AB,
    ∴∠2+∠4=90°,
    ∵OC=OB,
    ∴∠1=∠2,
    ∴∠3=∠4,
    ∵AB为直径,
    ∴∠ACB=90°,
    ∴∠3+∠5=90°,∠4+∠BDC=90°,
    ∴∠BDC=∠5,
    ∴CF=DF;
    (2)在Rt△ABC中,AC==8,
    ∵∠BAC=∠DAB,
    ∴△ABC∽△ABD,
    ∴,即,
    ∴AD=,
    ∵∠3=∠4,
    ∴FC=FB,
    而FC=FD,
    ∴FD=FB,
    而BO=AO,
    ∴OF为△ABD的中位线,
    ∴OF=AD=.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.
    24、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.
    【解析】
    分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;
    (2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;
    (3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.
    【详解】
    详解: (1)初中5名选手的平均分,众数b=85,
    高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;
    (2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,
    故初中部决赛成绩较好;
    (3)=70,
    ∵,
    ∴初中代表队选手成绩比较稳定.
    【点睛】
    本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.

    相关试卷

    2023年江西省萍乡市中考数学模拟试卷(含解析):

    这是一份2023年江西省萍乡市中考数学模拟试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省重点名校2021-2022学年中考数学模拟预测试卷含解析:

    这是一份江西省重点名校2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    江西省萍乡市芦溪县达标名校2022年中考数学模拟预测试卷含解析:

    这是一份江西省萍乡市芦溪县达标名校2022年中考数学模拟预测试卷含解析,共29页。试卷主要包含了关于x的方程x2+,下列说法,已知,下列实数中,为无理数的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map