年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年江苏省南通市部分校中考数学押题试卷含解析

    2022年江苏省南通市部分校中考数学押题试卷含解析第1页
    2022年江苏省南通市部分校中考数学押题试卷含解析第2页
    2022年江苏省南通市部分校中考数学押题试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省南通市部分校中考数学押题试卷含解析

    展开

    这是一份2022年江苏省南通市部分校中考数学押题试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列命题是真命题的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是(  )
    ①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE与△BDF的周长相等.

    A.1个 B.2个 C.3个 D.4个
    2.下列运算正确的是(  )
    A.(a2)4=a6 B.a2•a3=a6 C. D.
    3.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为(  )

    A.4.5m B.4.8m C.5.5m D.6 m
    4.若分式方程无解,则a的值为(  )
    A.0 B.-1 C.0或-1 D.1或-1
    5.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是(  )
    A. B. C. D.
    6.已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为(  )
    A.﹣2 B.﹣1 C.1 D.2
    7.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )

    A.80° B.90° C.100° D.102°
    8.下列命题是真命题的是(  )
    A.如果a+b=0,那么a=b=0 B.的平方根是±4
    C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等
    9.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是(  )

    A.40° B.50° C.60° D.140°
    10.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为( )
    A.–1 B.2 C.1 D.–2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.
    12.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.

    13.一个凸边形的内角和为720°,则这个多边形的边数是__________________
    14.因式分解:a3b﹣ab3=_____.
    15.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.

    16.已知|x|=3,y2=16,xy<0,则x﹣y=_____.
    三、解答题(共8题,共72分)
    17.(8分)某车间的甲、乙两名工人分别同时生产只同一型号的零件,他们生产的零件(只)与生产时间(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:

    (1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;
    (2)若乙提高速度后,乙的生产速度是甲的倍,请分别求出甲、乙两人生产全过程中,生产的零件(只)与生产时间(分)的函数关系式;
    (3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.
    18.(8分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB=20米,AB=30米.

    (1)求点B距水平面AE的高度BH;
    (2)求广告牌CD的高度.
    19.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.

    (1)求证:AE=BF;
    (2)连接GB,EF,求证:GB∥EF;
    (3)若AE=1,EB=2,求DG的长.
    20.(8分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
    “读书节“活动计划书
    书本类别
    科普类
    文学类
    进价(单位:元)
    18
    12
    备注
    (1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;

    (1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
    21.(8分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
    如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
    22.(10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
    求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
    23.(12分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
    24.如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点 E.
    (1)求抛物线的解析式;
    (2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.
    (3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    等腰直角三角形纸片ABC中,∠C=90°,
    ∴∠A=∠B=45°,
    由折叠可得,∠EDF=∠A=45°,
    ∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,
    ∴∠CDE=∠DFB,故①正确;
    由折叠可得,DE=AE=3,
    ∴CD=,
    ∴BD=BC﹣DC=4﹣>1,
    ∴BD>CE,故②正确;
    ∵BC=4,CD=4,
    ∴BC=CD,故③正确;
    ∵AC=BC=4,∠C=90°,
    ∴AB=4,
    ∵△DCE的周长=1+3+2=4+2,
    由折叠可得,DF=AF,
    ∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,
    ∴△DCE与△BDF的周长相等,故④正确;
    故选D.
    点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    2、C
    【解析】
    根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
    【详解】
    A、原式=a8,所以A选项错误;
    B、原式=a5,所以B选项错误;
    C、原式= ,所以C选项正确;
    D、与不能合并,所以D选项错误.
    故选:C.
    【点睛】
    本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
    3、D
    【解析】
    根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
    【详解】
    解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
    ∵△ABC∽△EDC,
    ∴,
    即,
    解得:AB=6,
    故选:D.
    【点睛】
    本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
    4、D
    【解析】
    试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
    整理得:x(1-a)=2a,
    当1-a=0时,即a=1,整式方程无解,
    当x+1=0,即x=-1时,分式方程无解,
    把x=-1代入x(1-a)=2a得:-(1-a)=2a,
    解得:a=-1,
    故选D.
    点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
    5、D
    【解析】
    根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.
    【详解】
    解:∵ab<0,
    ∴分两种情况:
    (1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
    (2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.
    故选D
    【点睛】
    本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.
    6、C
    【解析】
    根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.
    【详解】
    ∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),
    ∴设旋转后的函数解析式为y=﹣x﹣1,
    在一次函数y=﹣x+2中,令y=1,则有﹣x+2=1,解得:x=4,
    即一次函数y=﹣x+2与x轴交点为(4,1).
    一次函数y=﹣x﹣1中,令y=1,则有﹣x﹣1=1,解得:x=﹣2,
    即一次函数y=﹣x﹣1与x轴交点为(﹣2,1).
    ∴m==1,
    故选:C.
    【点睛】
    本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.
    7、A
    【解析】
    分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.
    详解:∵AB∥CD.
    ∴∠A=∠3=40°,
    ∵∠1=60°,
    ∴∠2=180°∠1−∠A=80°,
    故选:A.
    点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.
    8、D
    【解析】
    解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;
    B、=4的平方根是±2,错误,为假命题;
    C、有公共顶点且相等的两个角是对顶角,错误,为假命题;
    D、等腰三角形两底角相等,正确,为真命题;
    故选D.
    9、A
    【解析】
    试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.
    解:∵DB⊥BC,∠2=50°,
    ∴∠3=90°﹣∠2=90°﹣50°=40°,
    ∵AB∥CD,
    ∴∠1=∠3=40°.
    故选A.

    10、C
    【解析】
    把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.
    【详解】
    把x=1代入x2+mx+n=0,
    代入1+m+n=0,
    ∴m+n=-1,
    ∴m2+2mn+n2=(m+n)2=1.
    故选C.
    【点睛】
    本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(y﹣1)1(x﹣1)1.
    【解析】
    解:令x+y=a,xy=b,
    则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)
    =(b﹣1)1﹣(a﹣1b)(1﹣a)
    =b1﹣1b+1+a1﹣1a﹣1ab+4b
    =(a1﹣1ab+b1)+1b﹣1a+1
    =(b﹣a)1+1(b﹣a)+1
    =(b﹣a+1)1;
    即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.
    故答案为(y﹣1)1(x﹣1)1.
    点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
    (1)公式法:完全平方公式,平方差公式.
    (3)十字相乘法.
    因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.
    12、4π﹣1
    【解析】
    分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.
    详解:
    连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,

    ∴∠COD=45°,
    ∴OC=CD=4,
    ∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积
    ==4π-1.
    故答案是:4π-1.
    点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.
    13、1
    【解析】
    设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
    【详解】
    解:设这个多边形的边数是n
    根据多边形内角和公式可得
    解得.
    故答案为:1.
    【点睛】
    此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.
    14、ab(a+b)(a﹣b)
    【解析】
    先提取公因式ab,然后再利用平方差公式分解即可.
    【详解】
    a3b﹣ab3
    =ab(a2﹣b2)
    =ab(a+b)(a﹣b),
    故答案为ab(a+b)(a﹣b).
    【点睛】
    本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.
    15、
    【解析】
    分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.
    详解:∵AB=4,BC=3,
    ∴AC=BD=5,
    转动一次A的路线长是:
    转动第二次的路线长是:
    转动第三次的路线长是:
    转动第四次的路线长是:0,
    以此类推,每四次循环,
    故顶点A转动四次经过的路线长为:
    ∵2017÷4=504…1,
    ∴顶点A转动四次经过的路线长为:
    故答案为
    点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.
    16、±3
    【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.
    详解:因为|x|=1,所以x=±1.
    因为y2=16,所以y=±2.
    又因为xy<0,所以x、y异号,
    当x=1时,y=-2,所以x-y=3;
    当x=-1时,y=2,所以x-y=-3.
    故答案为:±3.
    点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.

    三、解答题(共8题,共72分)
    17、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150
    【解析】
    解:(1)甲每分钟生产=25只;
    提高生产速度之前乙的生产速度==15只/分,
    故乙在提高生产速度之前已生产了零件:15×10=150只;
    (2)结合后图象可得:
    甲:y甲=25x(0≤x≤20);
    乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,
    乙:y乙=15x(0≤x≤10),
    当10<x≤17时,设y乙=kx+b,把(10,150)、(17,500),代入可得:
    10k+b=150,17k+b=500,
    解得:k=50,b=−350,
    故y乙=50x−350(10≤x≤17).
    综上可得:y甲=25x(0≤x≤20);

    (3)令y甲=y乙,得25x=50x−350,
    解得:x=14,
    此时y甲=y乙=350只,故甲工人还有150只未生产.
    18、 (1) BH为10米;(2) 宣传牌CD高约(40﹣20)米
    【解析】
    (1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;
    (2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.
    【详解】
    (1)过B作BH⊥AE于H,
    Rt△ABH中,∠BAH=30°,
    ∴BH=AB=×20=10(米),
    即点B距水平面AE的高度BH为10米;
    (2)过B作BG⊥DE于G,
    ∵BH⊥HE,GE⊥HE,BG⊥DE,
    ∴四边形BHEG是矩形.
    ∵由(1)得:BH=10,AH=10,
    ∴BG=AH+AE=(10+30)米,
    Rt△BGC中,∠CBG=45°,
    ∴CG=BG=(10+30)米,
    ∴CE=CG+GE=CG+BH=10+30+10=10+40(米),
    在Rt△AED中,
    =tan∠DAE=tan60°=,
    DE=AE=30
    ∴CD=CE﹣DE=10+40﹣30=40﹣20.
    答:宣传牌CD高约(40﹣20)米.

    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.
    19、(1)详见解析;(2)详见解析;(3).
    【解析】
    (1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
    (2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
    (3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
    (1)证明:连接BD,
    在Rt△ABC中,∠ABC=90°,AB=BC,
    ∴∠A=∠C=45°,
    ∵AB为圆O的直径,
    ∴∠ADB=90°,即BD⊥AC,
    ∴AD=DC=BD=AC,∠CBD=∠C=45°,
    ∴∠A=∠FBD,
    ∵DF⊥DG,
    ∴∠FDG=90°,
    ∴∠FDB+∠BDG=90°,
    ∵∠EDA+∠BDG=90°,
    ∴∠EDA=∠FDB,
    在△AED和△BFD中,
    ∠A=∠FBD,AD=BD,∠EDA=∠FDB,
    ∴△AED≌△BFD(ASA),
    ∴AE=BF;
    (2)证明:连接EF,BG,

    ∵△AED≌△BFD,
    ∴DE=DF,
    ∵∠EDF=90°,
    ∴△EDF是等腰直角三角形,
    ∴∠DEF=45°,
    ∵∠G=∠A=45°,
    ∴∠G=∠DEF,
    ∴GB∥EF;
    (3)∵AE=BF,AE=1,
    ∴BF=1,
    在Rt△EBF中,∠EBF=90°,
    ∴根据勾股定理得:EF2=EB2+BF2,
    ∵EB=2,BF=1,
    ∴EF=,
    ∵△DEF为等腰直角三角形,∠EDF=90°,
    ∴cos∠DEF=,
    ∵EF=,
    ∴DE=×,
    ∵∠G=∠A,∠GEB=∠AED,
    ∴△GEB∽△AED,
    ∴,即GE•ED=AE•EB,
    ∴•GE=2,即GE=,
    则GD=GE+ED=.
    20、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.
    【解析】
    (1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
    (2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
    【详解】
    解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,
    根据题意可得,
    化简得:540-10x=360,
    解得:x=18,
    经检验:x=18是原分式方程的解,且符合题意,
    则A类图书的标价为:1.5x=1.5×18=27(元),
    答:A类图书的标价为27元,B类图书的标价为18元;
    (2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),
    由题意得,,
    解得:600≤t≤800,
    则总利润w=(27-a-18)t+(18-12)(1000-t)
    =(9-a)t+6(1000-t)
    =6000+(3-a)t,
    故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;
    当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;
    当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;
    答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.
    【点睛】
    本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
    21、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
    【解析】
    (1)当t=3时,点E为AB的中点,
    ∵A(8,0),C(0,6),
    ∴OA=8,OC=6,
    ∵点D为OB的中点,
    ∴DE∥OA,DE=OA=4,
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴DE⊥AB,
    ∴∠OAB=∠DEA=90°,
    又∵DF⊥DE,
    ∴∠EDF=90°,
    ∴四边形DFAE是矩形,
    ∴DF=AE=3;
    (2)∠DEF的大小不变;理由如下:
    作DM⊥OA于M,DN⊥AB于N,如图2所示:

    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴四边形DMAN是矩形,
    ∴∠MDN=90°,DM∥AB,DN∥OA,
    ∴, ,
    ∵点D为OB的中点,
    ∴M、N分别是OA、AB的中点,
    ∴DM=AB=3,DN=OA=4,
    ∵∠EDF=90°,
    ∴∠FDM=∠EDN,
    又∵∠DMF=∠DNE=90°,
    ∴△DMF∽△DNE,
    ∴,
    ∵∠EDF=90°,
    ∴tan∠DEF=;
    (3)作DM⊥OA于M,DN⊥AB于N,
    若AD将△DEF的面积分成1:2的两部分,
    设AD交EF于点G,则点G为EF的三等分点;
    ①当点E到达中点之前时,如图3所示,NE=3﹣t,

    由△DMF∽△DNE得:MF=(3﹣t),
    ∴AF=4+MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    设直线AD的解析式为y=kx+b,
    把A(8,0),D(4,3)代入得: ,
    解得: ,
    ∴直线AD的解析式为y=﹣x+6,
    把G(,)代入得:t=;
    ②当点E越过中点之后,如图4所示,NE=t﹣3,

    由△DMF∽△DNE得:MF=(t﹣3),
    ∴AF=4﹣MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    代入直线AD的解析式y=﹣x+6得:t=;
    综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
    考点:四边形综合题.
    22、(1)
    (2)﹣1<x<0或x>1.
    (3)四边形OABC是平行四边形;理由见解析.
    【解析】
    (1)设反比例函数的解析式为(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.
    (2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;
    (3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC
    【详解】
    解:(1)设反比例函数的解析式为(k>0)
    ∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).
    又∵点A在上,∴,解得k=2.,
    ∴反比例函数的解析式为.
    (2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1.
    (3)四边形OABC是菱形.证明如下:
    ∵A(﹣1,﹣2),∴.
    由题意知:CB∥OA且CB=,∴CB=OA.
    ∴四边形OABC是平行四边形.
    ∵C(2,n)在上,∴.∴C(2,1).
    ∴.∴OC=OA.
    ∴平行四边形OABC是菱形.
    23、(1);(2)
    【解析】
    分析:(1)直接利用概率公式求解;
    (2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.
    详解:(1)甲队最终获胜的概率是;
    (2)画树状图为:

    共有8种等可能的结果数,其中甲至少胜一局的结果数为7,
    所以甲队最终获胜的概率=.
    点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    24、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
    【解析】
    利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;
    由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;
    由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论.
    【详解】
    当时,有,
    解得:,,
    点A的坐标为.
    当时,,
    点B的坐标为.

    ,解得:,
    抛物线的解析式为.
    点A的坐标为,点B的坐标为,
    直线AB的解析式为.
    点D的横坐标为x,则点D的坐标为,点E的坐标为,
    如图.

    点F的坐标为,点A的坐标为,点B的坐标为,
    ,,,


    当时,S取最大值,最大值为18,此时点E的坐标为,
    与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.
    ,,
    若要和相似,只需或如图.

    设点D的坐标为,则点E的坐标为,

    当时,,


    为等腰直角三角形.
    ,即,
    解得:舍去,,
    点D的坐标为;
    当时,点E的纵坐标为4,

    解得:,舍去,
    点D的坐标为.
    综上所述:存在点D,使得和相似,此时点D的坐标为或.
    故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标.

    相关试卷

    江苏省盐城市大丰区部分校2021-2022学年中考押题数学预测卷含解析:

    这是一份江苏省盐城市大丰区部分校2021-2022学年中考押题数学预测卷含解析,共14页。试卷主要包含了2018的相反数是,函数y=自变量x的取值范围是等内容,欢迎下载使用。

    江苏省南通市崇川区八一中学2021-2022学年中考押题数学预测卷含解析:

    这是一份江苏省南通市崇川区八一中学2021-2022学年中考押题数学预测卷含解析,共25页。试卷主要包含了若x>y,则下列式子错误的是等内容,欢迎下载使用。

    北京十一中学分校2022年中考数学押题试卷含解析:

    这是一份北京十一中学分校2022年中考数学押题试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,如图,过点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map