2022届江苏省南通市如皋市搬经镇市级名校中考数学押题卷含解析
展开
这是一份2022届江苏省南通市如皋市搬经镇市级名校中考数学押题卷含解析,共19页。试卷主要包含了计算4+,已知,,且,则的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列运算错误的是( )
A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
2.下列图案中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
3.如图,在中,,的垂直平分线交于点,垂足为.如果,则的长为( )
A.2 B.3 C.4 D.6
4.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是( )
A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7
5.若式子在实数范围内有意义,则 x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
6.计算4+(﹣2)2×5=( )
A.﹣16 B.16 C.20 D.24
7.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )
A.16 B.14 C.12 D.6
8.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( )
A.686×104 B.68.6×105 C.6.86×106 D.6.86×105
9.已知,,且,则的值为( )
A.2或12 B.2或 C.或12 D.或
10.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( )
A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13
11.一个正多边形的内角和为900°,那么从一点引对角线的条数是( )
A.3 B.4 C.5 D.6
12.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( )
A.10 B.8 C.5 D.3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.
14.已知a<0,那么|﹣2a|可化简为_____.
15.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.
16.分解因式a3﹣6a2+9a=_________________.
17.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.
18.若正n边形的内角为,则边数n为_____________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
20.(6分)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)
(1)求抛物线的表达式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标.
21.(6分)列方程解应用题:
某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
22.(8分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
请判断:AF与BE的数量关系是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
23.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.
24.(10分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)
25.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
26.(12分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.
如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.
(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;
(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?
27.(12分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
【详解】A、(m2)3=m6,正确;
B、a10÷a9=a,正确;
C、x3•x5=x8,正确;
D、a4+a3=a4+a3,错误,
故选D.
【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.
2、B
【解析】
根据轴对称图形与中心对称图形的概念解答.
【详解】
A.不是轴对称图形,是中心对称图形;
B.是轴对称图形,是中心对称图形;
C.不是轴对称图形,也不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、C
【解析】
先利用垂直平分线的性质证明BE=CE=8,再在Rt△BED中利用30°角的性质即可求解ED.
【详解】
解:因为垂直平分,
所以,
在中,,
则;
故选:C.
【点睛】
本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.
4、A
【解析】
先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.
【详解】
解:解不等式3x﹣m+1>0,得:x>,
∵不等式有最小整数解2,
∴1≤<2,
解得:4≤m<7,
故选A.
【点睛】
本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.
5、A
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
∵式子在实数范围内有意义,
∴ x﹣1>0, 解得:x>1.
故选:A.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
6、D
【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.
详解:4+(﹣2)2×5
=4+4×5
=4+20
=24,
故选:D.
点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
7、C
【解析】
先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
【详解】
∵AB=AC=15,AD平分∠BAC,
∴D为BC中点,
∵点E为AC的中点,
∴DE为△ABC中位线,
∴DE=AB,
∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
∴AB+AC+BC=42,
∴BC=42-15-15=12,
故选C.
【点睛】
此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
8、D
【解析】
根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:
686000=6.86×105,
故选:D.
9、D
【解析】
根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.
故选D.
10、A
【解析】
试题解析:∵原来的平均数是13岁,
∴13×23=299(岁),
∴正确的平均数a=≈12.97<13,
∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,
∴b=13;
故选A.
考点:1.平均数;2.中位数.
11、B
【解析】
n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.
【详解】
设这个正多边形的边数是n,则
(n-2)•180°=900°,
解得:n=1.
则这个正多边形是正七边形.
所以,从一点引对角线的条数是:1-3=4.
故选B
【点睛】
本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.
12、B
【解析】
∵摸到红球的概率为,
∴,
解得n=8,
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、a1+1ab+b1=(a+b)1
【解析】
试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,
所以a1+1ab+b1=(a+b)1.
点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.
14、﹣3a
【解析】
根据二次根式的性质和绝对值的定义解答.
【详解】
∵a<0,
∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.
【点睛】
本题主要考查了根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.
15、(1,﹣2).
【解析】
若设M(x,y),则由题目中对“实际距离”的定义可得方程组:
3-x+1-y=y+1+x+1=1-x+3+y,
解得:x=1,y=-2,
则M(1,-2).
故答案为(1,-2).
16、a(a﹣3)1 .
【解析】
a3﹣6a1+9a
=a(a1﹣6a+9)
=a(a﹣3)1.
故答案为a(a﹣3)1.
17、
【解析】
列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
【详解】
列表如下:
-2
-1
1
2
-2
2
-2
-4
-1
2
-1
-2
1
-2
-1
2
2
-4
-2
2
由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
∴积为大于-4小于2的概率为=,
故答案为.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
18、9
【解析】
分析:
根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.
详解:
由题意可得:140n=180(n-2),
解得:n=9.
故答案为:9.
点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1),; (2);(3).
【解析】
试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.
试题解析:(1);
(2);
(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:
由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)
考点:统计与概率的综合运用.
20、 (1)y=﹣x2+4x﹣3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
【解析】
(1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;
(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到 •2•|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.
【详解】
解:(1)抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;
(2)设P(t,﹣t2+4t﹣3),
因为S△PAB=1,AB=3﹣1=2,
所以•2•|﹣t2+4t﹣3|=1,
当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);
当﹣t2+4t﹣3=﹣1时,t1=2+,t2=2﹣,此时P点坐标为(2+,﹣1)或(2﹣,﹣1),
所以满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
【点睛】
本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
21、2.4元/米
【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.
【详解】
解:设去年用水的价格每立方米元,则今年用水价格为每立方米元
由题意列方程得:
解得
经检验,是原方程的解
(元/立方米)
答:今年居民用水的价格为每立方米元.
【点睛】
此题主要考查了分式方程的应用,正确表示出用水量是解题关键.
22、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立
【解析】
试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;
(2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;
(3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.
试题解析:解:(1)AF=BE,AF⊥BE.
(2)结论成立.
证明:∵四边形ABCD是正方形,
∴BA="AD" =DC,∠BAD =∠ADC = 90°.
在△EAD和△FDC中,
∴△EAD≌△FDC.
∴∠EAD=∠FDC.
∴∠EAD+∠DAB=∠FDC+∠CDA,
即∠BAE=∠ADF.
在△BAE和△ADF中,
∴△BAE≌△ADF.
∴BE = AF,∠ABE=∠DAF.
∵∠DAF +∠BAF=90°,
∴∠ABE +∠BAF=90°,
∴AF⊥BE.
(3)结论都能成立.
考点:正方形,等边三角形,三角形全等
23、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
【详解】
(1)把A(-1,2)代入,得到k2=-2,
∴反比例函数的解析式为.
∵B(m,-1)在上,∴m=2,
由题意,解得:,∴一次函数的解析式为y=-x+1.
(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
【点睛】
本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
24、
【解析】
作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长.
【详解】
如图所示,作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,
∵∠A=∠CBD=36°,∠C=∠C,
∴△ABC∽△BDC,
∴,
设BC=BD=AD=x,则CD=4﹣x,
∵BC2=AC×CD,
∴x2=4×(4﹣x),
解得x1=,x2=(舍去),
∴BC的长.
【点睛】
本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
25、(1)证明见解析;(2)证明见解析;(3)4.
【解析】
试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.
点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
26、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样.
【解析】
(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;
【详解】
(1)∵共有1种等可能的结果,落回到圈A的只有1种情况,
∴落回到圈A的概率P1=;
(2)列表得:
1
2
3
1
1
(1,1)
(2,1)
(3,1)
(1,1)
2
(1,2)
(2,2)
(3,2)
(1,2)
3
(1,3)
(2,3)
(3,3)
(1,3)
1
(1,1)
(2,1)
(3,1)
(1,1)
∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),
∴最后落回到圈A的概率P2==,
∴她与嘉嘉落回到圈A的可能性一样.
【点睛】
此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数.
27、2.1.
【解析】
据题意得出tanB = , 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.
【详解】
解:
据题意得tanB=,
∵MN∥AD,
∴∠A=∠B,
∴tanA=,
∵DE⊥AD,
∴在Rt△ADE中,tanA=,
∵AD=9,
∴DE=1,
又∵DC=0.5,
∴CE=2.5,
∵CF⊥AB,
∴∠FCE+∠CEF=90°,
∵DE⊥AD,
∴∠A+∠CEF=90°,
∴∠A=∠FCE,
∴tan∠FCE=
在Rt△CEF中,CE2=EF2+CF2
设EF=x,CF=1x(x>0),CE=2.5,
代入得()2=x2+(1x)2
解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),
∴CF=1x=≈2.1,
∴该停车库限高2.1米.
【点睛】
点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.
相关试卷
这是一份江苏省南通市如皋市搬经镇2023-2024学年九上数学期末监测试题含答案,共8页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省南通市如皋市搬经镇数学八年级第一学期期末经典试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是,下列说法正确的是,计算的结果是等内容,欢迎下载使用。
这是一份2022~2023学年江苏省南通市如皋市搬经镇初级中学八年级(上)月考数学试卷(9月)(含解析),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。