终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年江苏省连云港市灌南县重点名校中考数学考试模拟冲刺卷含解析

    立即下载
    加入资料篮
    2022年江苏省连云港市灌南县重点名校中考数学考试模拟冲刺卷含解析第1页
    2022年江苏省连云港市灌南县重点名校中考数学考试模拟冲刺卷含解析第2页
    2022年江苏省连云港市灌南县重点名校中考数学考试模拟冲刺卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省连云港市灌南县重点名校中考数学考试模拟冲刺卷含解析

    展开

    这是一份2022年江苏省连云港市灌南县重点名校中考数学考试模拟冲刺卷含解析,共20页。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若函数与y=﹣2x﹣4的图象的交点坐标为(a,b),则的值是(  )
    A.﹣4 B.﹣2 C.1 D.2
    2.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。

    A.70° B.65° C.50° D.25°
    3.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为( )

    A.60° B.65° C.70° D.75°
    4.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为(  )

    A. B. C. D.1
    5.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为(  )

    A.48 B.35 C.30 D.24
    6.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉(   )
    A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
    7.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高
    A.—7℃ B.7℃ C.—1℃ D.1℃
    8.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于(  )

    A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b
    9.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是(  )

    A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
    10.如图图形中,可以看作中心对称图形的是(  )
    A. B. C. D.
    11.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
    A.2 B.-2 C.4 D.-4
    12.下列运算错误的是(  )
    A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x>0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= .

    14.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.
    15.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)

    16.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.
    17.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.

    18.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解分式方程:=1
    20.(6分)已知关于的一元二次方程 (为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.
    21.(6分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
    (1)求证:AC是△BDE的外接圆的切线;
    (2)若AD=2,AE=6,求EC的长.

    22.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

    23.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.
    (1)求证:AB为⊙C的切线.
    (2)求图中阴影部分的面积.

    24.(10分)已知:关于x的方程x2﹣(2m+1)x+2m=0
    (1)求证:方程一定有两个实数根;
    (2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.
    25.(10分)阅读下面材料:
    已知:如图,在正方形ABCD中,边AB=a1.
    按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.
    操作步骤
    作法
    由操作步骤推断(仅选取部分结论)
    第一步
    在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2
    (i)△EAF≌△BAF(判定依据是①);
    (ii)△CEF是等腰直角三角形;
    (iii)用含a1的式子表示a2为②:
    第二步
    以CE为边构造第二个正方形CEFG;

    第三步
    在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:
    (iv)用只含a1的式子表示a3为③:
    第四步
    以CH为边构造第三个正方形CHIJ

    这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④
    请解决以下问题:
    (1)完成表格中的填空:
    ①   ;②   ;③   ;④   ;
    (2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).

    26.(12分)先化简,再求值:( +)÷,其中x=
    27.(12分)△ABC在平面直角坐标系中的位置如图所示.
    画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可.
    【详解】
    解方程组,
    把①代入②得:=﹣2x﹣4,
    整理得:x2+2x+1=0,
    解得:x=﹣1,
    ∴y=﹣2,
    交点坐标是(﹣1,﹣2),
    ∴a=﹣1,b=﹣2,
    ∴=﹣1﹣1=﹣2,
    故选B.
    【点睛】
    本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.
    2、C
    【解析】
    首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
    【详解】
    解:∵AD∥BC,
    ∴∠EFB=∠FED=65°,
    由折叠的性质知,∠DEF=∠FED′=65°,
    ∴∠AED′=180°-2∠FED=50°,
    故选:C.
    【点睛】
    此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
    3、D
    【解析】
    解:连接OD
    ∵∠AOD=60°,
    ∴ACD=30°.
    ∵∠CEB是△ACE的外角,
    ∴△CEB=∠ACD+∠CAO=30°+45°=75°
    故选:D

    4、A
    【解析】
    首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.
    【详解】
    取AB的中点M,连接OM,

    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,OB=OD,
    ∴OM∥AD∥BC,OM=AD=×3=,
    ∴△EFB∽△EOM,
    ∴,
    ∵AB=5,BE=AB,
    ∴BE=2,BM=,
    ∴EM=+2=,
    ∴,
    ∴BF=,
    故选A.
    【点睛】
    此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.
    5、D
    【解析】
    分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.
    详解:∵AB∥EF,AF∥BE, ∴四边形ABEF为平行四边形, ∵BF平分∠ABC,
    ∴四边形ABEF为菱形, 连接AE交BF于点O, ∵BF=6,BE=5,∴BO=3,EO=4,
    ∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.
    点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.
    6、C
    【解析】
    【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.
    【详解】设每个小箱子装洗衣粉x千克,由题意得:
    4x+2=36,
    解得:x=8.5,
    即每个小箱子装洗衣粉8.5千克,
    故选C.
    【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.
    7、B
    【解析】
    求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.
    【详解】
    3-(-4)=3+4=7℃.
    故选B.
    8、A
    【解析】
    根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.
    【详解】
    由数轴可知,b<a<0<c,
    ∴c-a>0,a+b<0,
    则|c-a|-|a+b|=c-a+a+b=c+b,
    故选A.
    【点睛】
    本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.
    9、C
    【解析】
    【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
    【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
    ∴不等式y1>y2的解集是﹣3<x<0或x>2,
    故选C.
    【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
    10、D
    【解析】
    根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项不合题意;
    B、不是中心对称图形,故此选项不合题意;
    C、不是中心对称图形,故此选项不合题意;
    D、是中心对称图形,故此选项符合题意;
    故选D.
    【点睛】
    此题主要考查了中心对称图形,关键掌握中心对称图形定义.
    11、C
    【解析】
    对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
    即16-4k=0,解得:k=4.
    考点:一元二次方程根的判别式
    12、D
    【解析】
    【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
    【详解】A、(m2)3=m6,正确;
    B、a10÷a9=a,正确;
    C、x3•x5=x8,正确;
    D、a4+a3=a4+a3,错误,
    故选D.
    【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值.
    【详解】
    解:根据题意可知,
    轴,
    设图中阴影部分的面积从左向右依次为,
    则,




    解得:k=2.
    故答案为1.
    考点:反比例函数综合题.
    14、
    【解析】
    试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.
    由题意得圆锥的母线长
    则所得到的侧面展开图形面积.
    考点:勾股定理,圆锥的侧面积公式
    点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.
    15、π
    【解析】
    ∵∠C=30°,
    ∴∠AOB=60°,
    ∴.即的长为.
    16、m>-1
    【解析】
    首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
    【详解】
    解:,
    ①+②得1x+1y=1m+4,
    则x+y=m+1,
    根据题意得m+1>0,
    解得m>﹣1.
    故答案是:m>﹣1.
    【点睛】
    本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.
    17、4
    【解析】
    试题解析:∵ 可
    ∴设DC=3x,BD=5x,
    又∵MN是线段AB的垂直平分线,
    ∴AD=DB=5x,
    又∵AC=8cm,
    ∴3x+5x=8,
    解得,x=1,
    在Rt△BDC中,CD=3cm,DB=5cm,

    故答案为:4cm.
    18、y=160﹣80x(0≤x≤2)
    【解析】
    根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.
    【详解】
    解:∵汽车的速度是平均每小时80千米,
    ∴它行驶x小时走过的路程是80x,
    ∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).
    【点睛】
    本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、x=1
    【解析】
    分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    化为整式方程得:2﹣3x=x﹣2,
    解得:x=1,
    经检验x=1是原方程的解,
    所以原方程的解是x=1.
    【点睛】
    此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为
    整式方程求解.解分式方程一定注意要验根.
    20、 (1)证明见解析;(2)或.
    【解析】
    (1)求出△的值,再判断出其符号即可;
    (2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.
    【详解】
    (1)依题意,得



    ∵,
    ∴方程总有两个实数根.
    (2)∵,
    ∴,.
    ∵方程的两个实数根都是整数,且是正整数,
    ∴或.
    ∴或.
    【点睛】
    本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.
    21、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;
    (2)设⊙O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE∥BC得,然后根据比例性质可计算出EC.
    试题解析:(1)证明:取BD的中点0,连结OE,如图,
    ∵DE⊥EB,
    ∴∠BED=90°,
    ∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,
    ∵BE平分∠ABC,
    ∴∠CBE=∠OBE,
    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∴∠EB=∠CBE,
    ∴OE∥BC,
    ∴∠AEO=∠C=90°,
    ∴OE⊥AE,
    ∴AC是△BDE的外接圆的切线;
    (2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r,
    在Rt△AEO中,∵AE2+OE2=AO2,
    ∴62+r2=(r+2)2,解得r=2,
    ∵OE∥BC,
    ∴,即,
    ∴CE=1.

    考点:1、切线的判定;2、勾股定理
    22、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
    【解析】
    (1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
    (2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
    (3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
    【详解】
    (1)证明:如图1中,连接BD.
    ∵点E,H分别为边AB,DA的中点,
    ∴EH∥BD,EH=BD,
    ∵点F,G分别为边BC,CD的中点,
    ∴FG∥BD,FG=BD,
    ∴EH∥FG,EH=GF,
    ∴中点四边形EFGH是平行四边形.
    (2)四边形EFGH是菱形.
    证明:如图2中,连接AC,BD.
    ∵∠APB=∠CPD,
    ∴∠APB+∠APD=∠CPD+∠APD,
    即∠APC=∠BPD,
    在△APC和△BPD中,
    ∵AP=PB,∠APC=∠BPD,PC=PD,
    ∴△APC≌△BPD,
    ∴AC=BD.
    ∵点E,F,G分别为边AB,BC,CD的中点,
    ∴EF=AC,FG=BD,
    ∵四边形EFGH是平行四边形,
    ∴四边形EFGH是菱形.
    (3)四边形EFGH是正方形.
    证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
    ∵△APC≌△BPD,
    ∴∠ACP=∠BDP,
    ∵∠DMO=∠CMP,
    ∴∠COD=∠CPD=90°,
    ∵EH∥BD,AC∥HG,
    ∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
    ∵四边形EFGH是菱形,
    ∴四边形EFGH是正方形.

    考点:平行四边形的判定与性质;中点四边形.
    23、 (1)证明见解析;(2)1-π.
    【解析】
    (1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
    (2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
    【详解】
    (1)过C作CF⊥AB于F.
    ∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
    ∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
    ∵CF⊥AB,∴AB为⊙C的切线;

    (2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
    【点睛】
    本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
    24、 (1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
    【解析】
    试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;
    (2)先讨论x1,x2的正负,再根据根与系数的关系求解.
    试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,
    ∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,
    故方程一定有两个实数根;
    (2)①当x1≥0,x2≥0时,即x1=x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    ②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,
    ∴x1+x2=2m+1=0,
    解得:m=﹣;
    ③当x1≤0,x2≤0时,即﹣x1=﹣x2,
    ∴△=(2m﹣1)2=0,
    解得m=;
    综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
    25、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.
    【解析】
    (1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;
    ②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;
    ③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;
    ④同理可得an=(-1)n-1a1;
    (2)根据题意画图即可.
    【详解】
    解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;
    理由是:如图1,在Rt△EAF和Rt△BAF中,
    ∵,
    ∴Rt△EAF≌Rt△BAF(HL);
    ②∵四边形ABCD是正方形,
    ∴AB=BC=a1,∠ABC=90°,
    ∴AC=a1,
    ∵AE=AB=a1,
    ∴CE=a2=a1﹣a1=(﹣1)a1;
    ③∵四边形CEFG是正方形,
    ∴△CEF是等腰直角三角形,
    ∴CF=CE=(-1)a1,
    ∵FH=EF=a2,
    ∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;
    ④同理可得:an=(-1)n-1a1;
    故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;
    (2)所画正方形CHIJ见右图.

    26、-
    【解析】
    先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
    【详解】
    原式=[ +]÷=[-+]÷=·=,
    当x=时,原式==-.
    【点睛】
    本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
    27、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
    【解析】
    (1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
    (2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
    (1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
    【详解】
    (1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
    (2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
    (1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.

    【点睛】
    本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.

    相关试卷

    2022年徐州市重点名校中考数学考试模拟冲刺卷含解析:

    这是一份2022年徐州市重点名校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了如图等内容,欢迎下载使用。

    2022年江苏省南京市江北新区重点名校中考数学考试模拟冲刺卷含解析:

    这是一份2022年江苏省南京市江北新区重点名校中考数学考试模拟冲刺卷含解析,共21页。

    2022年成都市青羊区重点名校中考数学考试模拟冲刺卷含解析:

    这是一份2022年成都市青羊区重点名校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,﹣2018的绝对值是,估算的值是在,下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map