2022年江苏省连云港市灌南县重点名校中考数学考试模拟冲刺卷含解析
展开
这是一份2022年江苏省连云港市灌南县重点名校中考数学考试模拟冲刺卷含解析,共20页。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若函数与y=﹣2x﹣4的图象的交点坐标为(a,b),则的值是( )
A.﹣4 B.﹣2 C.1 D.2
2.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
A.70° B.65° C.50° D.25°
3.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为( )
A.60° B.65° C.70° D.75°
4.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为( )
A. B. C. D.1
5.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为( )
A.48 B.35 C.30 D.24
6.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )
A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
7.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高
A.—7℃ B.7℃ C.—1℃ D.1℃
8.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于( )
A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b
9.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
10.如图图形中,可以看作中心对称图形的是( )
A. B. C. D.
11.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
A.2 B.-2 C.4 D.-4
12.下列运算错误的是( )
A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x>0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= .
14.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.
15.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)
16.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.
17.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.
18.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)解分式方程:=1
20.(6分)已知关于的一元二次方程 (为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.
21.(6分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(1)求证:AC是△BDE的外接圆的切线;
(2)若AD=2,AE=6,求EC的长.
22.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
23.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.
(1)求证:AB为⊙C的切线.
(2)求图中阴影部分的面积.
24.(10分)已知:关于x的方程x2﹣(2m+1)x+2m=0
(1)求证:方程一定有两个实数根;
(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.
25.(10分)阅读下面材料:
已知:如图,在正方形ABCD中,边AB=a1.
按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.
操作步骤
作法
由操作步骤推断(仅选取部分结论)
第一步
在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2
(i)△EAF≌△BAF(判定依据是①);
(ii)△CEF是等腰直角三角形;
(iii)用含a1的式子表示a2为②:
第二步
以CE为边构造第二个正方形CEFG;
第三步
在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:
(iv)用只含a1的式子表示a3为③:
第四步
以CH为边构造第三个正方形CHIJ
这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④
请解决以下问题:
(1)完成表格中的填空:
① ;② ;③ ;④ ;
(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).
26.(12分)先化简,再求值:( +)÷,其中x=
27.(12分)△ABC在平面直角坐标系中的位置如图所示.
画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可.
【详解】
解方程组,
把①代入②得:=﹣2x﹣4,
整理得:x2+2x+1=0,
解得:x=﹣1,
∴y=﹣2,
交点坐标是(﹣1,﹣2),
∴a=﹣1,b=﹣2,
∴=﹣1﹣1=﹣2,
故选B.
【点睛】
本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.
2、C
【解析】
首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
【详解】
解:∵AD∥BC,
∴∠EFB=∠FED=65°,
由折叠的性质知,∠DEF=∠FED′=65°,
∴∠AED′=180°-2∠FED=50°,
故选:C.
【点睛】
此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
3、D
【解析】
解:连接OD
∵∠AOD=60°,
∴ACD=30°.
∵∠CEB是△ACE的外角,
∴△CEB=∠ACD+∠CAO=30°+45°=75°
故选:D
4、A
【解析】
首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.
【详解】
取AB的中点M,连接OM,
∵四边形ABCD是平行四边形,
∴AD∥BC,OB=OD,
∴OM∥AD∥BC,OM=AD=×3=,
∴△EFB∽△EOM,
∴,
∵AB=5,BE=AB,
∴BE=2,BM=,
∴EM=+2=,
∴,
∴BF=,
故选A.
【点睛】
此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.
5、D
【解析】
分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.
详解:∵AB∥EF,AF∥BE, ∴四边形ABEF为平行四边形, ∵BF平分∠ABC,
∴四边形ABEF为菱形, 连接AE交BF于点O, ∵BF=6,BE=5,∴BO=3,EO=4,
∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.
点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.
6、C
【解析】
【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.
【详解】设每个小箱子装洗衣粉x千克,由题意得:
4x+2=36,
解得:x=8.5,
即每个小箱子装洗衣粉8.5千克,
故选C.
【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.
7、B
【解析】
求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.
【详解】
3-(-4)=3+4=7℃.
故选B.
8、A
【解析】
根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.
【详解】
由数轴可知,b<a<0<c,
∴c-a>0,a+b<0,
则|c-a|-|a+b|=c-a+a+b=c+b,
故选A.
【点睛】
本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.
9、C
【解析】
【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
∴不等式y1>y2的解集是﹣3<x<0或x>2,
故选C.
【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
10、D
【解析】
根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【详解】
解:A、不是中心对称图形,故此选项不合题意;
B、不是中心对称图形,故此选项不合题意;
C、不是中心对称图形,故此选项不合题意;
D、是中心对称图形,故此选项符合题意;
故选D.
【点睛】
此题主要考查了中心对称图形,关键掌握中心对称图形定义.
11、C
【解析】
对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
即16-4k=0,解得:k=4.
考点:一元二次方程根的判别式
12、D
【解析】
【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
【详解】A、(m2)3=m6,正确;
B、a10÷a9=a,正确;
C、x3•x5=x8,正确;
D、a4+a3=a4+a3,错误,
故选D.
【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.
【解析】
先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值.
【详解】
解:根据题意可知,
轴,
设图中阴影部分的面积从左向右依次为,
则,
,
解得:k=2.
故答案为1.
考点:反比例函数综合题.
14、
【解析】
试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.
由题意得圆锥的母线长
则所得到的侧面展开图形面积.
考点:勾股定理,圆锥的侧面积公式
点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.
15、π
【解析】
∵∠C=30°,
∴∠AOB=60°,
∴.即的长为.
16、m>-1
【解析】
首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
【详解】
解:,
①+②得1x+1y=1m+4,
则x+y=m+1,
根据题意得m+1>0,
解得m>﹣1.
故答案是:m>﹣1.
【点睛】
本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.
17、4
【解析】
试题解析:∵ 可
∴设DC=3x,BD=5x,
又∵MN是线段AB的垂直平分线,
∴AD=DB=5x,
又∵AC=8cm,
∴3x+5x=8,
解得,x=1,
在Rt△BDC中,CD=3cm,DB=5cm,
故答案为:4cm.
18、y=160﹣80x(0≤x≤2)
【解析】
根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.
【详解】
解:∵汽车的速度是平均每小时80千米,
∴它行驶x小时走过的路程是80x,
∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).
【点睛】
本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、x=1
【解析】
分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
化为整式方程得:2﹣3x=x﹣2,
解得:x=1,
经检验x=1是原方程的解,
所以原方程的解是x=1.
【点睛】
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为
整式方程求解.解分式方程一定注意要验根.
20、 (1)证明见解析;(2)或.
【解析】
(1)求出△的值,再判断出其符号即可;
(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.
【详解】
(1)依题意,得
,
,
.
∵,
∴方程总有两个实数根.
(2)∵,
∴,.
∵方程的两个实数根都是整数,且是正整数,
∴或.
∴或.
【点睛】
本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.
21、(1)证明见解析;(2)1.
【解析】
试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;
(2)设⊙O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE∥BC得,然后根据比例性质可计算出EC.
试题解析:(1)证明:取BD的中点0,连结OE,如图,
∵DE⊥EB,
∴∠BED=90°,
∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠EB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴OE⊥AE,
∴AC是△BDE的外接圆的切线;
(2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r,
在Rt△AEO中,∵AE2+OE2=AO2,
∴62+r2=(r+2)2,解得r=2,
∵OE∥BC,
∴,即,
∴CE=1.
考点:1、切线的判定;2、勾股定理
22、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【详解】
(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
(2)四边形EFGH是菱形.
证明:如图2中,连接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD,
即∠APC=∠BPD,
在△APC和△BPD中,
∵AP=PB,∠APC=∠BPD,PC=PD,
∴△APC≌△BPD,
∴AC=BD.
∵点E,F,G分别为边AB,BC,CD的中点,
∴EF=AC,FG=BD,
∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
(3)四边形EFGH是正方形.
证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠DMO=∠CMP,
∴∠COD=∠CPD=90°,
∵EH∥BD,AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
考点:平行四边形的判定与性质;中点四边形.
23、 (1)证明见解析;(2)1-π.
【解析】
(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
【详解】
(1)过C作CF⊥AB于F.
∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
∵CF⊥AB,∴AB为⊙C的切线;
(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
【点睛】
本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
24、 (1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
【解析】
试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;
(2)先讨论x1,x2的正负,再根据根与系数的关系求解.
试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,
∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,
故方程一定有两个实数根;
(2)①当x1≥0,x2≥0时,即x1=x2,
∴△=(2m﹣1)2=0,
解得m=;
②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,
∴x1+x2=2m+1=0,
解得:m=﹣;
③当x1≤0,x2≤0时,即﹣x1=﹣x2,
∴△=(2m﹣1)2=0,
解得m=;
综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
25、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.
【解析】
(1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;
②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;
③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;
④同理可得an=(-1)n-1a1;
(2)根据题意画图即可.
【详解】
解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;
理由是:如图1,在Rt△EAF和Rt△BAF中,
∵,
∴Rt△EAF≌Rt△BAF(HL);
②∵四边形ABCD是正方形,
∴AB=BC=a1,∠ABC=90°,
∴AC=a1,
∵AE=AB=a1,
∴CE=a2=a1﹣a1=(﹣1)a1;
③∵四边形CEFG是正方形,
∴△CEF是等腰直角三角形,
∴CF=CE=(-1)a1,
∵FH=EF=a2,
∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;
④同理可得:an=(-1)n-1a1;
故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;
(2)所画正方形CHIJ见右图.
26、-
【解析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
【详解】
原式=[ +]÷=[-+]÷=·=,
当x=时,原式==-.
【点睛】
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
27、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
【解析】
(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
【详解】
(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.
【点睛】
本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
相关试卷
这是一份2022年徐州市重点名校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了如图等内容,欢迎下载使用。
这是一份2022年江苏省南京市江北新区重点名校中考数学考试模拟冲刺卷含解析,共21页。
这是一份2022年成都市青羊区重点名校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,﹣2018的绝对值是,估算的值是在,下列计算正确的是等内容,欢迎下载使用。