鲁科版高中物理必修第一册第4章力与平衡章末综合提升含答案 试卷
展开第4章 力与平衡
(教师用书独具)
主题1 整体法和隔离法
整体法和隔离法是对物体进行受力分析常用的两种方法,这两种方法比较如下。
方法 | 整体法 | 隔离法 |
概念 | 将加速度相同的几个相互关联的物体作为一个整体进行受力分析的方法。 | 将所研究的对象从周围的物体中隔离出来进行受力分析的方法。 |
选用原则 | 研究系统外的物体对系统整体的作用力或研究系统整体的加速度。 | 研究系统内部各物体之间的相互作用力。 |
注意问题 | 受力分析时不考虑系统内各物体之间的相互作用力。 | 一般情况下隔离出受力较少的物体。 |
1.用整体法解题的步骤
当只涉及研究系统而不涉及系统内部某些物体所受的力和其运动状态时,一般可采用整体法,其基本步骤如下。
(1)明确研究的系统或运动的全过程。
(2)画出系统整体的受力分析图或运动全过程的示意图。
(3)选择适当的物理规律列方程求解。
2.用隔离法解题的步骤
为了研究系统(连接体)内某个物体的受力和运动情况,一般采取隔离法,其基本步骤如下。
(1)明确研究对象、过程或状态。
(2)将某个研究对象或某段运动过程从全过程中隔离出来。
(3)画出相应状态下该研究对象的受力分析图或运动示意图。
(4)选择适当的物理规律列方程求解。
【典例1】 在粗糙水平面上放着一个质量为M的三角形木块abc,在它的两个粗糙斜面上分别放有质量为m1和m2的两个物体,m1>m2,两斜面与水平面的夹角分别为θ1、θ2,如图所示,若三角形木块和两物体都是静止的,则粗糙水平面对三角形木块( )
A.有摩擦力的作用,摩擦力的方向水平向右
B.有摩擦力的作用,摩擦力的方向水平向左
C.有摩擦力的作用,但摩擦力的方向不能确定,因θ1、θ2的数值均未给出
D.以上结论都不对
D [解法1(隔离法)
把三角形木块隔离出来,如图甲所示,它的两个粗糙斜面上分别受到两物体对它的压力FN1、FN2,摩擦力F1、F2。由两物体的平衡条件知,这四个力的大小分别为FN1=m1gcos θ1,FN2=m2gcos θ2,F1=m1gsin θ1,F2=m2gsin θ2。它们的水平分力的大小分别为FN1x=FN1sin θ1=m1gcos θ1sin θ1,FN2x=FN2sin θ2=m2gcos θ2sin θ2,F1x=F1cos θ1=m1gcos θ1sin θ1,F2x=F2cos θ2=m2gcos θ2sin θ2,可得FN1x=F1x,FN2x=F2x,则它们的水平分力互相平衡,木块在水平方向无滑动趋势,因此不受水平面的摩擦力作用。
图甲 图乙
解法2(整体法)
由于三角形木块和斜面上的两物体都静止,故可以把它们看成一个整体,如图乙所示,竖直方向上受到重力(m1+m2+M)g和支持力FN的作用处于平衡状态,水平方向上无任何滑动趋势,因此不受水平面的摩擦力作用。]
整体法和隔离法有时要交叉使用,但必须使用力的相互作用原理才能从整体法过渡到隔离法。
主题2 物体平衡模型分析
1.“轻绳”模型
轻绳只能发生拉伸形变,所以只能产生拉力,拉力方向总是指向绳收缩的方向,且绳内部张力处处相等。
2.“滑轮”模型
滑轮模型通常是指滑轮和轻绳的组合,忽略滑轮与轻绳之间的摩擦,此时滑轮两边绳子的拉力大小相等。
3.“结点”模型
“结点”往往与重物相连接,作用在结点上的各力并不一定相等,但所有力的合力必为零。
4.“轻弹簧”模型
轻弹簧不仅能发生拉伸形变,还能发生压缩形变,所以轻弹簧既能产生拉力,又能承受压力,且在弹簧内部弹力处处相等。弹力方向总是沿着弹簧的轴线,在弹性限度内,弹力的大小为F=kx。
5.“轻杆”模型
轻杆不仅能发生拉伸形变,还能发生压缩形变,所以轻杆不仅能产生拉力,还能承受压力,且在杆内弹力处处相等。轻杆还能发生弯曲形变,所以杆的弹力不一定沿杆的方向。
(1)“死杆”模型
“死杆”即轻杆不能转动,它产生的弹力不一定沿杆方向,其大小和方向均要根据平衡条件求解。
(2)“活杆”模型
“活杆”即轻杆可以绕光滑轴转动,它产生的弹力一定沿杆方向(否则杆就会转动),弹力的大小和方向要根据平衡条件求解。
【典例2】 如图所示,将一根不可伸长、柔软的轻绳左、右两端分别系于A、B两点上。一物体用轻滑轮悬挂在轻绳上,达到平衡时,两段绳子间的夹角为θ1,绳子张力大小为F1;将绳子右端移到C点,待系统达到平衡时,两段绳子间的夹角为θ2,绳子张力大小为F2;将绳子右端再由C点移到D点,待系统达到平衡时,两段绳子间的夹角为θ3,绳子张力大小为F3。不计摩擦,并且BC为竖直线,则( )
A.θ1=θ2<θ3 B.θ1=θ2=θ3
C.F1>F2>F3 D.F1=F2>F3
A [跨过滑轮的绳上各点的张力大小相同,设张力大小为F,两段绳子间的夹角为θ,如图所示,由平衡条件与几何关系得2Fcos=mg ①。设绳子总长度为L,绳子两端点的水平距离为d,由几何关系得Lsin=d ②。绳子右端从B点移到C点的过程中,L、d均不变,由②式可知θ不变,得θ1=θ2。代入①式可知F不变,得F1=F2。绳子右端从C点移到D点过程中,d增大,故θ增大,即θ2<θ3,结合①式可得F2<F3。故θ1=θ2<θ3,F1=F2<F3,只有A选项正确。]
滑轮模型中滑轮两边轻绳拉力大小相等,所以两轮与竖直方向间夹角一定相等,这也是“滑轮”模型与“结点”模型的最大区别。