2022年吉林省长春市汽车经济开发区第五学校中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于( )
A.30°10′ B.29°10′ C.29°50′ D.50°10′
2.tan30°的值为( )
A. B. C. D.
3.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是( )
A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α
4.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( )
A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×1010
5.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )
A.7海里/时 B.7海里/时 C.7海里/时 D.28海里/时
6.如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=( )
A.9 B.10 C.12 D.13
7.下列图形中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
8.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
9.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )
1
2
3
4
5
成绩(m)
8.2
8.0
8.2
7.5
7.8
A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.0
10.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是( )
A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是______.
12.将一副三角板如图放置,若,则的大小为______.
13.一个圆锥的侧面展开图是半径为8 cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.
14.不等式组的解集是__________.
15.在Rt△ABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_____.
16.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
三、解答题(共8题,共72分)
17.(8分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?
18.(8分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),
第一次变化:从左边小桶中拿出两个小球放入中间小桶中;
第二次变化:从右边小桶中拿出一个小球放入中间小桶中;
第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.
(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;
(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);
(3)求第三次变化后中间小桶中有多少个小球?
19.(8分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.
20.(8分)如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.
(1)求△ABC的面积;
(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果△APD是直角三角形,求PB的长.
21.(8分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?
22.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
23.(12分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.
请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 .
24.某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?
(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.
【详解】
∵AB∥CD,
∴∠D=∠A=50°10′,
∵∠COD=100°,
∴∠C=180°-∠D-∠COD=29°50′.
故选C.
【点睛】
本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°-∠D-∠COD.应该掌握的是三角形的内角和为180°.
2、D
【解析】
直接利用特殊角的三角函数值求解即可.
【详解】
tan30°=,故选:D.
【点睛】
本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.
3、D
【解析】
利用旋转不变性即可解决问题.
【详解】
∵△DAE是由△BAC旋转得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正确,
故选D.
【点睛】
本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.
4、B
【解析】
根据题目中的数据可以用科学记数法表示出来,本题得以解决.
【详解】
解:3.82亿=3.82×108,
故选B.
【点睛】
本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.
5、A
【解析】
试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.
由题意海里,海里,
在中,
所以
在中,
所以
所以
解得:
故选A.
6、A
【解析】
由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.
【详解】
∵,
∴.
又∵EF∥BC,
∴△AEF∽△ABC.
∴.
∴1S△AEF=S△ABC.
又∵S四边形BCFE=8,
∴1(S△ABC﹣8)=S△ABC,
解得:S△ABC=1.
故选A.
7、B
【解析】
解:第一个图是轴对称图形,又是中心对称图形;
第二个图是轴对称图形,不是中心对称图形;
第三个图是轴对称图形,又是中心对称图形;
第四个图是轴对称图形,不是中心对称图形;
既是轴对称图形,又是中心对称图形的有2个.故选B.
8、B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
9、D
【解析】
解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.
其中8.1出现1次,出现次数最多,8.2排在第三,
∴这组数据的众数与中位数分别是:8.1,8.2.
故选D.
【点睛】
本题考查众数;中位数.
10、C
【解析】
分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.
【详解】
解:①a>1时,二次函数图象开口向上,
∵|x1﹣2|>|x2﹣2|,
∴y1>y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
②a<1时,二次函数图象开口向下,
∵|x1﹣2|>|x2﹣2|,
∴y1<y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
综上所述,表达式正确的是a(y1﹣y2)>1.
故选:C.
【点睛】
本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1或2
【解析】
先根据非负数的性质列式求出x、y的值,再分x的值是腰长与底边两种情况讨论求解.
【详解】
根据题意得,x-5=0,y-7=0,
解得x=5,y=7,
①5是腰长时,三角形的三边分别为5、5、7,三角形的周长为1.
②5是底边时,三角形的三边分别为5、7、7,
能组成三角形,5+7+7=2;
所以,三角形的周长为:1或2;
故答案为1或2.
【点睛】
本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
12、160°
【解析】
试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.
解:∵∠AOD=20°,∠COD=∠AOB=90°,
∴∠COA=∠BOD=90°﹣20°=70°,
∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,
故答案为160°.
考点:余角和补角.
13、cm
【解析】
试题分析:把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.设此圆锥的底面半径为r,
根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=, r=cm.
考点:圆锥侧面展开扇形与底面圆之间的关系
14、x≥1
【解析】
分析:分别求出两个不等式的解,从而得出不等式组的解集.
详解:解不等式①可得:x≥1, 解不等式②可得:x>-3, ∴不等式组的解为x≥1.
点睛:本题主要考查的是不等式组的解集,属于基础题型.理解不等式的性质是解决这个问题的关键.
15、1
【解析】
解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.
点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.
16、2.40,2.1.
【解析】
∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
∴它们的中位数为2.40,众数为2.1.
故答案为2.40,2.1.
点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.
三、解答题(共8题,共72分)
17、R= 或R=
【解析】
解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.
考点:圆与直线的位置关系.
18、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.
【解析】
(1)(2)根据材料中的变化方法解答;
(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答.
【详解】
解:(1)依题意得:(3+2)÷(3﹣2)=5
故答案是:5;
(2)依题意得:a+2+1=a+3;
故答案是:(a+3)
(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,
依题意得:a﹣1+x=2a
x=a+1
所以 a+3﹣x=a+3﹣(a+1)=2
答:第三次变化后中间小桶中有2个小球.
【点睛】
考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.
19、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4 =x2﹣1.
当x=﹣时,原式=(﹣)2﹣1=3﹣1=﹣2.
【解析】
应用整式的混合运算法则进行化简,最后代入x值求值.
20、(1)12(2)y=(0<x<5)(3)或
【解析】
试题分析:(1)过点A作AH⊥BC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;
(2)先证明△BPD∽△BAC,得到=,再根据 ,代入相关的量即可得;
(3)分情况进行讨论即可得.
试题解析:(1)过点A作AH⊥BC于点H ,则∠AHB=90°,∴cosB= ,
∵cosB=,AB=5,∴BH=4,∴AH=3,
∵AB=AC,∴BC=2BH=8,
∴S△ABC=×8×3=12
(2)∵PB=PD,∴∠B=∠PDB,
∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,
∴△BPD∽△BAC,
∴ ,
即,
解得=,
∴ ,
∴ ,
解得y=(0<x<5);
(3)∠APD<90°,
过C作CE⊥AB交BA延长线于E,可得cos∠CAE= ,
①当∠ADP=90°时,
cos∠APD=cos∠CAE=,
即 ,
解得x=;
②当∠PAD=90°时,
,
解得x=,
综上所述,PB=或.
【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.
21、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.
【解析】
(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.
(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;
(3)根据函数的图象和交点坐标即可求得.
【详解】
⑴把C(6,-1)代入,得.
则反比例函数的解析式为,
把代入,得,
∴点D的坐标为(-2,3).
⑵将C(6,-1)、D(-2,3)代入,得
,解得.
∴一次函数的解析式为,
∴点B的坐标为(0,2),点A的坐标为(4,0).
∴,
在在中,
∴.
⑶根据函数图象可知,当或时,一次函数的值大于反比例函数的值
【点睛】
此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.
22、 (1) 每台A型100元,每台B 150元;(2) 34台A型和66台B型;(3) 70台A型电脑和30台B型电脑的销售利润最大
【解析】
(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,
(2)①据题意得,y=﹣50x+15000,
②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,
(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.
【详解】
解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得
解得
答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.
(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,
②据题意得,100﹣x≤2x,解得x≥33,
∵y=﹣50x+15000,﹣50<0,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100﹣x=66,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,
33≤x≤70
①当0<m<50时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②m=50时,m﹣50=0,y=15000,
即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;
③当50<m<100时,m﹣50>0,y随x的增大而增大,
∴当x=70时,y取得最大值.
即商店购进70台A型电脑和30台B型电脑的销售利润最大.
【点睛】
本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.
23、(1)10;(2)0.9;(3)44%
【解析】
(1)把条形统计图中每天的访问量人数相加即可得出答案;
(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;
(3)根据增长率的算数列出算式,再进行计算即可.
【详解】
(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);
故答案为10;
(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,
∴星期日学生日访问总量为:3×30%=0.9(万人次);
故答案为0.9;
(3)周六到周日学生访问该网站的日平均增长率为:=44%;
故答案为44%.
考点:折线统计图;条形统计图
24、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;
(3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.
【解析】
(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.
【详解】
(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,
由题意得,,
∴m=1200,
经检验,m=1200是原分式方程的解,也符合题意,
∴m+300=1500元,
答:每台空调的进价为1200元,每台电冰箱的进价为1500元;
(2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,
∵,
∴33≤x≤38,
∵x为正整数,
∴x=34,35,36,37,38,
即:共有5种方案;
(3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,
∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,
当100<k<150时,y1随x的最大而增大,
∴x=38时,y1取得最大值,
即:购进电冰箱38台,空调62台,总利润最大,
当0<k<100时,y1随x的最大而减小,
∴x=34时,y1取得最大值,
即:购进电冰箱34台,空调66台,总利润最大,
当k=100时,无论采取哪种方案,y1恒为20000元.
【点睛】
本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.
2024年吉林省长春市经开区洋浦学校中考数学一模试卷(含解析): 这是一份2024年吉林省长春市经开区洋浦学校中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省长春市汽车经济开发区第五校2023-2024学年九上数学期末质量检测试题含答案: 这是一份吉林省长春市汽车经济开发区第五校2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了如图,在中,,,,则等内容,欢迎下载使用。
吉林省长春市汽车经济开发区第五校2023-2024学年八上数学期末监测试题含答案: 这是一份吉林省长春市汽车经济开发区第五校2023-2024学年八上数学期末监测试题含答案,共7页。试卷主要包含了用反证法证明命题,点所在的象限是,已知A样本的数据如下等内容,欢迎下载使用。