2020年浙江省衢州市中考数学试卷
展开2020年浙江省衢州市中考数学试卷
一、选择题(本题共有10小题,每小题3分,共30分)
1.(3分)比0小1的数是( )
A.0 B.﹣1 C.1 D.±1
2.(3分)下列几何体中,俯视图是圆的几何体是( )
A. B.
C. D.
3.(3分)计算(a2)3,正确结果是( )
A.a5 B.a6 C.a8 D.a9
4.(3分)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )
A.13 B.14 C.16 D.18
5.(3分)要使二次根式x-3有意义,则x的值可以为( )
A.0 B.1 C.2 D.4
6.(3分)不等式组3(x-2)≤x-43x>2x-1的解集在数轴上表示正确的是( )
A.
B.
C.
D.
7.(3分)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( )
A.180(1﹣x)2=461 B.180(1+x)2=461
C.368(1﹣x)2=442 D.368(1+x)2=442
8.(3分)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( )
A. B.
C. D.
9.(3分)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )
A.向左平移2个单位,向下平移2个单位
B.向左平移1个单位,向上平移2个单位
C.向右平移1个单位,向下平移1个单位
D.向右平移2个单位,向上平移1个单位
10.(3分)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为( )
A.2 B.2+12 C.5+12 D.43
二、填空题(本题共有6小题,每小题4分,共24分)
11.(4分)一元一次方程2x+1=3的解是x= .
12.(4分)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为 .
13.(4分)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是 .
14.(4分)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为 dm.
15.(4分)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=kx(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=83,则k= .
16.(4分)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).
(1)点P到MN的距离为 cm.
(2)当点P,O,A在同一直线上时,点Q到MN的距离为 cm.
三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.请务必写出解答过程)
17.(6分)计算:|﹣2|+(13)0-9+2sin30°.
18.(6分)先化简,再求值:aa2-2a+1÷1a-1,其中a=3.
19.(6分)如图,在5×5的网格中,△ABC的三个顶点都在格点上.
(1)在图1中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.
(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).
20.(8分)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.
被抽样的学生视力情况频数表
组别
视力段
频数
A
5.1≤x≤5.3
25
B
4.8≤x≤5.0
115
C
4.4≤x≤4.7
m
D
4.0≤x≤4.3
52
(1)求组别C的频数m的值.
(2)求组别A的圆心角度数.
(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?
21.(8分)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.
(1)求证:∠CAD=∠CBA.
(2)求OE的长.
22.(10分)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).
(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.
(2)若货轮比游轮早36分钟到达衢州.问:
①货轮出发后几小时追上游轮?
②游轮与货轮何时相距12km?
23.(10分)如图1,在平面直角坐标系中,△ABC的顶点A,C分別是直线y=-83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:
①线段EF长度是否有最小值.
②△BEF能否成为直角三角形.
小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.
(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.
(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.
(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.
24.(12分)【性质探究】
如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.
(1)判断△AFG的形状并说明理由.
(2)求证:BF=2OG.
【迁移应用】
(3)记△DGO的面积为S1,△DBF的面积为S2,当S1S2=13时,求ADAB的值.
【拓展延伸】
(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.
2020年浙江省衢州市中考数学试卷
参考答案与试题解析
一、选择题(本题共有10小题,每小题3分,共30分)
1.(3分)比0小1的数是( )
A.0 B.﹣1 C.1 D.±1
【解答】解:0﹣1=﹣1,
即比0小1的数是﹣1.
故选:B.
2.(3分)下列几何体中,俯视图是圆的几何体是( )
A. B.
C. D.
【解答】解:A、俯视图是圆,故此选项正确;
B、俯视图是正方形,故此选项错误;
C、俯视图是长方形,故此选项错误;
D、俯视图是长方形,故此选项错误.
故选:A.
3.(3分)计算(a2)3,正确结果是( )
A.a5 B.a6 C.a8 D.a9
【解答】解:由幂的乘方与积的乘方法则可知,(a2)3=a2×3=a6.
故选:B.
4.(3分)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )
A.13 B.14 C.16 D.18
【解答】解:由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:120360=13.
故选:A.
5.(3分)要使二次根式x-3有意义,则x的值可以为( )
A.0 B.1 C.2 D.4
【解答】解:由题意得:x﹣3≥0,
解得:x≥3,
故选:D.
6.(3分)不等式组3(x-2)≤x-43x>2x-1的解集在数轴上表示正确的是( )
A.
B.
C.
D.
【解答】解:3(x-2)≤x-4①3x>2x-1②,
由①得x≤1;
由②得x>﹣1;
故不等式组的解集为﹣1<x≤1,
在数轴上表示出来为:.
故选:C.
7.(3分)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( )
A.180(1﹣x)2=461 B.180(1+x)2=461
C.368(1﹣x)2=442 D.368(1+x)2=442
【解答】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,
故选:B.
8.(3分)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( )
A. B.
C. D.
【解答】解:A、由作图可知,内错角相等两直线平行,本选项不符合题意.
B、由作图可知,同位角相等两直线平行,本选项不符合题意.
C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,
D、无法判断两直线平行,
故选:D.
9.(3分)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )
A.向左平移2个单位,向下平移2个单位
B.向左平移1个单位,向上平移2个单位
C.向右平移1个单位,向下平移1个单位
D.向右平移2个单位,向上平移1个单位
【解答】解:A、平移后的解析式为y=(x+2)2﹣2,当x=2时,y=14,本选项不符合题意.
B、平移后的解析式为y=(x+1)2+2,当x=2时,y=11,本选项不符合题意.
C、平移后的解析式为y=(x﹣1)2﹣1,当x=2时,y=0,函数图象经过(2,0),本选项符合题意.
D、平移后的解析式为y=(x﹣2)2+1,当x=2时,y=1,本选项不符合题意.
故选:C.
10.(3分)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为( )
A.2 B.2+12 C.5+12 D.43
【解答】解:
由折叠补全图形如图所示,
∵四边形ABCD是矩形,
∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,
由第一次折叠得:∠DAE=∠A=90°,∠ADE=12∠ADC=45°,
∴∠AED=∠ADE=45°,
∴AE=AD=1,
在Rt△ADE中,根据勾股定理得,DE=2AD=2,
故选:A.
二、填空题(本题共有6小题,每小题4分,共24分)
11.(4分)一元一次方程2x+1=3的解是x= 1 .
【解答】解;将方程移项得,
2x=2,
系数化为1得,
x=1.
故答案为:1.
12.(4分)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为 x2﹣1 .
【解答】解:根据题意得:
(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.
故答案为:x2﹣1.
13.(4分)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是 5 .
【解答】解:∵某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,
∴x=5×5﹣4﹣4﹣5﹣6=6,
∴这一组数从小到大排列为:4,4,5,6,6,
∴这组数据的中位数是5.
故答案为:5.
14.(4分)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为 (4+2) dm.
【解答】解:∵正方形ABCD的边长为4dm,
∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是2dm,
∴图2中h的值为(4+2)dm.
故答案为:(4+2).
15.(4分)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=kx(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=83,则k= 403 .
【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=3,
在Rt△FMN中,∠MFN=30°,
∴FN=3MN=33,
∴AN=MB=83-33=53,
设OA=x,则OB=x+3,
∴F(x,83),M(x+3,53),
∴83x=(x+3)×53,
解得,x=5,
∴F(5,83),
∴k=5×83=403.
故答案为:403.
16.(4分)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).
(1)点P到MN的距离为 160 cm.
(2)当点P,O,A在同一直线上时,点Q到MN的距离为 6409 cm.
【解答】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.
由题意:OP=OQ=50cm,PQ=PA﹣AQ=14﹣=60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,
∵OH⊥PQ,
∴PH=HQ=40(cm),
∵cos∠P=PHOP=PTPM,
∵4050=PT200,
∴PT=160(cm),
∴点P到MN的距离为160cm,
故答案为160.
(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.
由题意AT=PT﹣PA=160﹣140=20(cm),OA=PA﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,
∵QH⊥OA,
∴QH2=AQ2﹣AH2=OQ2﹣OH2,
∴602﹣x2=502﹣(90﹣x)2,
解得x=4609,
∴HT=AH+AT=6409(cm),
∴点Q到MN的距离为6409cm.
故答案为6409.
三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.请务必写出解答过程)
17.(6分)计算:|﹣2|+(13)0-9+2sin30°.
【解答】解:原式=2+1﹣3+2×12
=2+1﹣3+1
=1.
18.(6分)先化简,再求值:aa2-2a+1÷1a-1,其中a=3.
【解答】解:原式=a(a-1)2•(a﹣1)
=aa-1,
当a=3时,原式=33-1=32.
19.(6分)如图,在5×5的网格中,△ABC的三个顶点都在格点上.
(1)在图1中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.
(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).
【解答】解:(1)如图平行四边形ABDE即为所求(点D的位置还有6种情形可取).
(2)如图,直线l即为所求、
20.(8分)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.
被抽样的学生视力情况频数表
组别
视力段
频数
A
5.1≤x≤5.3
25
B
4.8≤x≤5.0
115
C
4.4≤x≤4.7
m
D
4.0≤x≤4.3
52
(1)求组别C的频数m的值.
(2)求组别A的圆心角度数.
(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?
【解答】解:(1)本次抽查的人数为:115÷23%=500,
m=500×61.6%=308,
即m的值是308;
(2)组别A的圆心角度数是:360°×25500=18°,
即组别A的圆心角度数是18°;
(3)25000×25+115500=7000(人),
答:该市25000名九年级学生达到“视力良好”的有7000人,
建议是:同学们应少玩电子产品,注意用眼保护.
21.(8分)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.
(1)求证:∠CAD=∠CBA.
(2)求OE的长.
【解答】(1)证明:∵AE=DE,OC是半径,
∴AC=CD,
∴∠CAD=∠CBA.
(2)解:∵AB是直径,
∴∠ACB=90°,
∵AE=DE,
∴OC⊥AD,
∴∠AEC=90°,
∴∠AEC=∠ACB,
∴△AEC∽△BCA,
∴CEAC=ACAB,
∴CE6=610,
∴CE=3.6,
∵OC=12AB=5,
∴OE=OC﹣EC=5﹣3.6=1.4.
22.(10分)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).
(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.
(2)若货轮比游轮早36分钟到达衢州.问:
①货轮出发后几小时追上游轮?
②游轮与货轮何时相距12km?
【解答】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.
∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).
(2)①280÷20=14h,
∴点A(14,280),点B(16,280),
∵36÷60=0.6(h),23﹣0.6=22.4,
∴点E(22.4,420),
设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,
∴s=20t﹣40(16≤t≤23),
同理由D(14,0),E(22,4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),
由题意:20t﹣40=50t﹣700,
解得t=22,
∵22﹣14=8(h),
∴货轮出发后8小时追上游轮.
②相遇之前相距12km时,20t﹣4﹣(50t﹣700)=12,解得t=21.6.
相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,
∴21.6h或22.4h时游轮与货轮何时相距12km.
23.(10分)如图1,在平面直角坐标系中,△ABC的顶点A,C分別是直线y=-83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:
①线段EF长度是否有最小值.
②△BEF能否成为直角三角形.
小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.
(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.
(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.
(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.
【解答】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.
(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,
则∠FGK=∠DHK=90°,
记FD交y轴于点K,
∵D点与F点关于y轴上的K点成中心对称,
∴KF=KD,
∵∠FKG=∠DKH,
∴Rt△FGK≌Rt△DHK(AAS),
∴FG=DH,
∵直线AC的解析式为y=-83x+4,
∴x=0时,y=4,
∴A(0,4),
又∵B(﹣2,0),
设直线AB的解析式为y=kx+b,
∴-2k+b=0b=4,
解得k=2b=4,
∴直线AB的解析式为y=2x+4,
过点F作FR⊥x轴于点R,
∵D点的橫坐标为m,
∴F(﹣m,﹣2m+4),
∴ER=2m,FR=﹣2m+4,
∵EF2=FR2+ER2,
∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,
令-8x3+4=0,得x=32,
∴0≤m≤32.
∴当m=1时,l的最小值为8,
∴EF的最小值为22.
(3)①∠FBE为定角,不可能为直角.
②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.
③如图3,∠BFE=90°时,有BF2+EF2=BE2.
由(2)得EF2=8m2﹣16m+16,
又∵BR=﹣m+2,FR=﹣2m+4,
∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,
又∵BE2=(m+2)2,
∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,
化简得,3m2﹣10m+8=0,
解得m1=43,m2=2(不合题意,舍去),
∴m=43.
综合以上可得,当△BEF为直角三角形时,m=0或m=43.
24.(12分)【性质探究】
如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.
(1)判断△AFG的形状并说明理由.
(2)求证:BF=2OG.
【迁移应用】
(3)记△DGO的面积为S1,△DBF的面积为S2,当S1S2=13时,求ADAB的值.
【拓展延伸】
(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.
【解答】(1)解:如图1中,△AFG是等腰三角形.
理由:∵AE平分∠BAC,
∴∠1=∠2,
∵DF⊥AE,
∴∠AHF=∠AHG=90°,
∵AH=AH,
∴△AHF≌△AHG(ASA),
∴AF=AG,
∴△AFG是等腰三角形.
(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.
∵AF=AG,
∴∠AFG=∠AGF,
∵∠AGF=∠OGL,
∴∠OGL=∠OLG,
∴OG=OL,
∵OL∥AB,
∴△DLO∽△DFB,
∴OLBF=DOBD,
∵四边形ABCD是矩形,
∴BD=2OD,
∴BF=2OL,
∴BF=2OG.
(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,
∵∠DAK=∠CAD,
∴△ADK∽△ACD,
∴DKAD=CDAC,
∵S1=12•OG•DK,S2=12•BF•AD,
又∵BF=2OG,S1S2=13,
∴DKAD=23=CDAC,设CD=2x,AC=3x,则AD=25x,
∴ADAB=ADCD=52.
(4)解:设OG=a,AG=k.
①如图4中,连接EF,当点F在线段AB上时,点G在OA上.
∵AF=AG,BF=2OG,
∴AF=AG=k,BF=2a,
∴AB=k+2a,AC=2(k+a),
∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,
∵∠ABE=∠DAF=90°,∠BAE=∠ADF,
∴△ABE∽△DAF,
∴BEAB=AEAD,
∴BEk+2a=kAD,
∴BE=k(k+2a)AD,
由题意:10×12×2a×k(k+2a)AD=AD•(k+2a),
∴AD2=10ka,
即10ka=3k2+4ka,
∴k=2a,
∴AD=25a,
∴BE=k(k+2a)AD=455a,AB=4a,
∴tan∠BAE=BEAB=55.
②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.
∵AF=AG,BF=2OG,
∴AF=AG=k,BF=2a,
∴AB=k﹣2a,AC=2(k﹣a),
∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,
∵∠ABE=∠DAF=90°,∠BAE=∠ADF,
∴△ABE∽△DAF,
∴BEAB=AEAD,
∴BEk-2a=kAD,
∴BE=k(k-2a)AD,
由题意:10×12×2a×k(k-2a)AD=AD•(k﹣2a),
∴AD2=10ka,
即10ka=3k2﹣4ka,
∴k=143a,
∴AD=21053a,
∴BE=k(k-2a)AD=810545a,AB=83a,
∴tan∠BAE=BEAB=10515,
综上所述,tan∠BAE的值为55或10515.
2020年浙江省衢州市中考数学试卷(解析版): 这是一份2020年浙江省衢州市中考数学试卷(解析版),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年浙江省衢州市中考数学试卷(原卷版): 这是一份2020年浙江省衢州市中考数学试卷(原卷版),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021年浙江省衢州市中考数学试卷: 这是一份2021年浙江省衢州市中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。