终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年湖南省长沙市雅实校中考数学考试模拟冲刺卷含解析

    立即下载
    加入资料篮
    2022年湖南省长沙市雅实校中考数学考试模拟冲刺卷含解析第1页
    2022年湖南省长沙市雅实校中考数学考试模拟冲刺卷含解析第2页
    2022年湖南省长沙市雅实校中考数学考试模拟冲刺卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省长沙市雅实校中考数学考试模拟冲刺卷含解析

    展开

    这是一份2022年湖南省长沙市雅实校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了答题时请按要求用笔,计算的结果是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为(  )

    A.8cm B.4cm C.4cm D.5cm
    2.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是(  )

    A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
    3.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )

    A. B. C.- D.
    4.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
    A. B. C. D.
    5.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是(  )

    A.右转80° B.左转80° C.右转100° D.左转100°
    6.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是(  )

    A.BO=OH B.DF=CE C.DH=CG D.AB=AE
    7.计算的结果是( )
    A.1 B.-1 C. D.
    8.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是(  )
    A. B. C. D.
    9.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第(  )象限.
    A.一 B.二 C.三 D.四
    10.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.

    12.计算的结果是__________.
    13.已知线段a=4,线段b=9,则a,b的比例中项是_____.
    14.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.
    15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.

    16.分解因式:mx2﹣4m=_____.
    三、解答题(共8题,共72分)
    17.(8分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.
    (Ⅰ)收集、整理数据
    请将表格补充完整:

    (Ⅱ)描述数据
    为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;
    (Ⅲ)分析数据、做出推测
    预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.
    18.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是   ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   .

    19.(8分)先化简,再求值:,其中m是方程的根.
    20.(8分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.

    (I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;
    (II)如图②,当α=60°时,求点C′的坐标;
    (III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).
    21.(8分)一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数.已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.

    (Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________;
    (Ⅱ)求这个二次函数的解析式和自变量的取值范围.
    22.(10分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.
    (1)求证:BP平分∠ABC;
    (2)若PC=1,AP=3,求BC的长.

    23.(12分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.

    24.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图①所示,S与x的函数关系图象如图②所示:

    (1)图中的a=______,b=______.
    (2)求快车在行驶的过程中S关于x的函数关系式.
    (3)直接写出两车出发多长时间相距200km?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.
    【详解】
    解:连接OC,如图所示:
    ∵AB是⊙O的直径,弦CD⊥AB,

    ∵OA=OC,
    ∴∠A=∠OCA=22.5°,
    ∵∠COE为△AOC的外角,
    ∴∠COE=45°,
    ∴△COE为等腰直角三角形,

    故选:C.

    【点睛】
    此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
    2、C
    【解析】
    解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.
    点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.
    3、A
    【解析】
    先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
    【详解】
    ∵∠ACB=90°,AC=BC=1,
    ∴AB=,
    ∴S扇形ABD=,
    又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
    ∴Rt△ADE≌Rt△ACB,
    ∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
    故选A.
    【点睛】
    本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
    4、B
    【解析】
    由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
    故选B.
    5、A
    【解析】
    60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.
    故选A.
    6、D
    【解析】
    解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.
    同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.
    ∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.
    ∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.
    同理可证EC=CG.
    ∵DH=CG,∴DF=CE,故B正确.
    无法证明AE=AB,故选D.
    7、C
    【解析】
    原式通分并利用同分母分式的减法法则计算,即可得到结果.
    【详解】
    解:==,
    故选:C.
    【点睛】
    此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
    8、B
    【解析】
    画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.
    【详解】
    画树状图如下:

    由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,
    所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,
    故选B.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    9、B
    【解析】
    根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
    【详解】
    ∵反比例函数y=的图象在一、三象限,
    ∴k>0,
    ∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
    故选:B.
    【点睛】
    考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
    10、B
    【解析】
    解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x>﹣1.
    【解析】
    一次函数y=kx+b的图象在x轴下方时,y<0,再根据图象写出解集即可.
    【详解】
    当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.
    故答案为:x>﹣1.
    【点睛】
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    12、1
    【解析】
    分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果.
    详解:原式
    故答案为:1.
    点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.
    13、6
    【解析】
    根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.
    【详解】
    解:∵a=4,b=9,设线段x是a,b的比例中项,
    ∴ ,
    ∴x2=ab=4×9=36,
    ∴x=6,x=﹣6(舍去).
    故答案为6
    【点睛】
    本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.
    14、3cm.
    【解析】
    根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.
    【详解】
    解:∵四边形ABCD是矩形,AC=6cm
    ∴OA=OC=OB=OD=3cm,
    ∵∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴AB=OA=3cm,
    故答案为:3cm
    【点睛】
    本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.
    15、或1
    【解析】
    图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=,
    图2,当∠MB’C=90°,∠A=90°,AB=AC,
    ∠C=45°,
    所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,
    所以BM=1.


    【详解】
    请在此输入详解!
    16、m(x+2)(x﹣2)
    【解析】
    提取公因式法和公式法相结合因式分解即可.
    【详解】
    原式

    故答案为
    【点睛】
    本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.

    三、解答题(共8题,共72分)
    17、(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
    【解析】
    (Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测 2019 年增加的百分比接近3% .
    【详解】
    (Ⅰ)
    年份
    2014
    2015
    2016
    2017
    2018
    动车组发送旅客量 a 亿人次
    0.87
    1.14
    1.46
    1.80
    2.17
    铁路发送旅客总量 b 亿人次
    2.52
    2.76
    3.07
    3.42
    3.82
    动车组发送旅客量占比× 100
    34.5 %
    41.3 %
    47.6 %
    52.6 %
    56.8 %
    (Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,
    故答案为折线图;
    (Ⅲ)预估 2019 年春运期间动车组发送旅客量占比约为 60%,
    预估理由是之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
    【点睛】
    本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.
    18、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);
    【解析】
    (1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
    (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.
    【详解】
    (1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);

    (2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
    故答案为(1)(2,-2);(2)(1,0)
    【点睛】
    此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.
    19、原式=.
    ∵m是方程的根.∴,即,∴原式=.
    【解析】
    试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可.
    试题解析:原式=.
    ∵m是方程的根.∴,即,∴原式=.
    考点:分式的化简求值;一元二次方程的解.
    20、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②
    C′(,﹣)
    【解析】
    (I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;
    (II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;
    (III)分两种情形分别求解即可解决问题;
    【详解】
    解:(I)如图①,

    ∵A(8,0),B(0,4),
    ∴OB=4,OA=8,
    ∵AC=OC=AC′=4,
    ∴当OB∥AC′,四边形OBC′A是平行四边形,
    ∵∠AOB=90°,
    ∴四边形OBC′A是矩形,
    ∴∠AC′B=90°,∵∠AC′D′=90°,
    ∴B、C′、D′共线,
    ∴BD′∥OA,
    ∵AC=CO, BD=AD,
    ∴CD=C′D′=OB=2,
    ∴D′(10,4),
    根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.
    综上所述,满足条件的点D坐标(10,4)或(6,4).
    (II)如图②,当α=60°时,作C′K⊥AC于K.

    在Rt△AC′K中,∵∠KAC′=60°,AC′=4,
    ∴AK=2,C′K=2,
    ∴OK=6,
    ∴C′(6,2).
    (III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).

    ②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,

    ∴OF=FC′,设OF=FC′=x,
    在Rt△ABC′中,BC′==8,
    在RT△BOF中,OB=4,OF=x,BF=8﹣x,
    ∴(8﹣x)2=42+x2,
    解得x=3,
    ∴OF=FC′=3,BF=5,作C′K⊥OA于K,
    ∵OB∥KC′,
    ∴==,
    ∴==,
    ∴KC′=,KF=,
    ∴OK=,
    ∴C′(,﹣).
    【点睛】
    本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    21、(0,),(4,3)
    【解析】
    试题分析:(Ⅰ)根据“刚出手时离地面高度为米、经过4秒到达离地面3米的高度和经过1秒落到地面”可得三点坐标;
    (Ⅱ)利用待定系数法求解可得.
    试题解析:解:(Ⅰ)由题意知,该二次函数图象上的三个点的坐标分别是(0,)、(4,3)、(1,0).故答案为:(0,)、(4,3)、(1,0).
    (Ⅱ)设这个二次函数的解析式为y=ax2+bx+c,将(Ⅰ)三点坐标代入,得:,解得:,所以所求抛物线解析式为y=﹣x2+x+,因为铅球从运动员抛出到落地所经过的时间为1秒,所以自变量的取值范围为0≤x≤1.
    22、(1)证明见解析;(2).
    【解析】
    试题分析:(1)连接OP,首先证明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;
    (2)作PH⊥AB于H.首先证明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解决问题.
    试题解析:
    (1)连接OP,
    ∵AC是⊙O的切线,
    ∴OP⊥AC,
    ∴∠APO=∠ACB=90°,
    ∴OP∥BC,
    ∴∠OPB=∠PBC,
    ∵OP=OB,
    ∴∠OPB=∠OBP,
    ∴∠PBC=∠OBP,
    ∴BP平分∠ABC;
    (2)作PH⊥AB于H.则∠AHP=∠BHP=∠ACB=90°,
    又∵∠PBC=∠OBP,PB=PB,
    ∴△PBC≌△PBH ,
    ∴PC=PH=1,BC=BH,
    在Rt△APH中,AH=,
    在Rt△ACB中,AC2+BC2=AB2
    ∴(AP+PC)2+BC2=(AH+HB)2,
    即42+BC2=(+BC)2,
    解得.

    23、1.
    【解析】
    试题分析:根据相似三角形的判定与性质,可得答案.
    试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴,∴DE===1.
    考点:相似三角形的判定与性质.
    24、(1)a=6, b=;(2) ;(3)或5h
    【解析】
    (1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;
    (2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.
    (3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.
    【详解】
    解:(1)由s与x之间的函数的图像可知:
    当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,
    ∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,
    ∴;
    (2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(,0)、(6,360)、(10,600),
    ∴设线段AB所在直线解析式为:S=kx+b,

    解得:k=-160,b=600,
    设线段BC所在的直线的解析式为:S=kx+b,

    解得:k=160,b=-600,
    设直线CD的解析式为:S=kx+b,

    解得:k=60,b=0

    (3)当两车相遇前相距200km,
    此时:S=-160x+600=200,解得:,
    当两车相遇后相距200km,
    此时:S=160x-600=200,解得:x=5,
    ∴或5时两车相距200千米
    【点睛】
    本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围.

    相关试卷

    湖南省长沙市长雅实、西雅、雅洋市级名校2021-2022学年中考数学模拟精编试卷含解析:

    这是一份湖南省长沙市长雅实、西雅、雅洋市级名校2021-2022学年中考数学模拟精编试卷含解析,共16页。

    2022年湖南省长沙市铁路一中学中考数学考试模拟冲刺卷含解析:

    这是一份2022年湖南省长沙市铁路一中学中考数学考试模拟冲刺卷含解析,共17页。

    2022届湖南省长沙市长雅中学中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022届湖南省长沙市长雅中学中考数学最后冲刺浓缩精华卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,对于数据,下列计算正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map