2022年湖南省邵阳市双清区第十一中学中考数学模拟精编试卷含解析
展开
这是一份2022年湖南省邵阳市双清区第十一中学中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法不正确的是,化简÷的结果是,方程的解是.等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知,,则的度数为( )
A. B. C. D.
2.要使式子有意义,的取值范围是( )
A. B.且 C.. 或 D. 且
3.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )
A.甲超市的利润逐月减少
B.乙超市的利润在1月至4月间逐月增加
C.8月份两家超市利润相同
D.乙超市在9月份的利润必超过甲超市
4.下列说法不正确的是( )
A.选举中,人们通常最关心的数据是众数
B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.数据3,5,4,1,﹣2的中位数是4
5.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
A. B. C. D
6.化简÷的结果是( )
A. B. C. D.2(x+1)
7.方程的解是( ).
A. B. C. D.
8.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
A. B. C. D.
9.观察下列图形,则第n个图形中三角形的个数是( )
A.2n+2 B.4n+4 C.4n﹣4 D.4n
10.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是( )
A.160元 B.180元 C.200元 D.220元
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.
12.若关于x的方程的解是正数,则m的取值范围是____________________
13.因式分解______.
14.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.
15.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.
16.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
三、解答题(共8题,共72分)
17.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.
18.(8分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.
等级
得分x(分)
频数(人)
A
95<x≤100
4
B
90<x≤95
m
C
85<x≤90
n
D
80<x≤85
24
E
75<x≤80
8
F
70<x≤75
4
请你根据图表中的信息完成下列问题:
(1)本次抽样调查的样本容量是 .其中m= ,n= .
(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;
(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?
(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
19.(8分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.
(1)求证:△BFD∽△CAD;
(2)求证:BF•DE=AB•AD.
20.(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
21.(8分)如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.
(1)求k的值;
(2)求tan∠DAC的值及直线AC的解析式;
(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.
22.(10分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:
节目代号
A
B
C
D
E
节目类型
新闻
体育
动画
娱乐
戏曲
喜爱人数
12
30
m
54
9
请你根据以上的信息,回答下列问题:
(1)被调查学生的总数为 人,统计表中m的值为 .扇形统计图中n的值为 ;
(2)被调查学生中,最喜爱电视节目的“众数” ;
(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.
23.(12分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
24.如图,在△ABC中,AB>AC,点D在边AC上.
(1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)
(2)若BC=5,点D是AC的中点,求DE的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.
详解:∵∠AOC=70°, ∠BOC=30°, ∴∠AOB=70°-30°=40°,
∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.
点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.
2、D
【解析】
根据二次根式和分式有意义的条件计算即可.
【详解】
解:∵ 有意义,
∴a+2≥0且a≠0,
解得a≥-2且a≠0.
故本题答案为:D.
【点睛】
二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.
3、D
【解析】
【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.
【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;
B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;
C、8月份两家超市利润相同,此选项正确,不符合题意;
D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,
故选D.
【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
4、D
【解析】
试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
故选D.
考点:随机事件发生的可能性(概率)的计算方法
5、D
【解析】
先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
【详解】
由题意得,2x+y=10,
所以,y=-2x+10,
由三角形的三边关系得,,
解不等式①得,x>2.5,
解不等式②的,x<5,
所以,不等式组的解集是2.5<x<5,
正确反映y与x之间函数关系的图象是D选项图象.
故选:D.
6、A
【解析】
原式利用除法法则变形,约分即可得到结果.
【详解】
原式=•(x﹣1)=.
故选A.
【点睛】
本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.
7、B
【解析】
直接解分式方程,注意要验根.
【详解】
解:=0,
方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
解这个一元一次方程,得:x=,
经检验,x=是原方程的解.
故选B.
【点睛】
本题考查了解分式方程,解分式方程不要忘记验根.
8、B
【解析】
解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.
9、D
【解析】
试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
解:根据给出的3个图形可以知道:
第1个图形中三角形的个数是4,
第2个图形中三角形的个数是8,
第3个图形中三角形的个数是12,
从而得出一般的规律,第n个图形中三角形的个数是4n.
故选D.
考点:规律型:图形的变化类.
10、C
【解析】
利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.
【详解】
解:设原价为x元,根据题意可得:
80%x=140+20,
解得:x=1.
所以该商品的原价为1元;
故选:C.
【点睛】
此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.
【详解】
解:设圆锥的底面圆的半径为r,
连结AB,如图,
∵扇形OAB的圆心角为90°,
∴∠AOB=90°,
∴AB为圆形纸片的直径,
∴AB=4cm,
∴OB=cm,
∴扇形OAB的弧AB的长=π,
∴2πr=π,
∴r=(cm).
故答案为.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.
12、m0且x-2≠0,则有4-m >0且4-m-2≠0,解得:m
相关试卷
这是一份2023年湖南省邵阳市邵东市中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年湖南省邵阳市中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022届湖南省邵阳市名校中考数学模拟精编试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式,最简二次根式是,下列运算中正确的是等内容,欢迎下载使用。