开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年湖北省枣阳五中学中考数学押题试卷含解析

    2022年湖北省枣阳五中学中考数学押题试卷含解析第1页
    2022年湖北省枣阳五中学中考数学押题试卷含解析第2页
    2022年湖北省枣阳五中学中考数学押题试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省枣阳五中学中考数学押题试卷含解析

    展开

    这是一份2022年湖北省枣阳五中学中考数学押题试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,二次函数y=,某校八等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
    A.2 B.8 C.﹣2 D.﹣8
    2.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )

    A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
    C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
    3.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( )
    A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×108
    4.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是    

    A. B. C. D.
    5.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为(  )
    A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
    6.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是(  )

    A. B. C. D.
    7.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )

    A.1+ B.2+ C.2﹣1 D.2+1
    8.二次函数y=(2x-1)2+2的顶点的坐标是(  )
    A.(1,2) B.(1,-2) C.(,2)    D.(-,-2)
    9.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是(  )
    A.38 B.39 C.40 D.42
    10.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为(  )

    A.16cm B.20cm C.24cm D.28cm
    二、填空题(共7小题,每小题3分,满分21分)
    11.一个n边形的每个内角都为144°,则边数n为______.
    12.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.

    13.计算:﹣|﹣2|+()﹣1=_____.
    14.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).
    ①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
    ②如果方程M有两根符号相同,那么方程N的两根符号也相同;
    ③如果方程M和方程N有一个相同的根,那么这个根必是x=1;
    ④如果5是方程M的一个根,那么是方程N的一个根.
    15.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:
    ①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+2.
    其中正确的是_____.(把你认为正确结论的序号都填上)

    16.如图,为的直径,与相切于点,弦.若,则______.

    17.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)

    19.(5分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.

    20.(8分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
    求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
    21.(10分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
    (1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
    (2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?
    22.(10分)如图,已知是的直径,点、在上,且,过点作,垂足为.

    求的长;
    若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.
    23.(12分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.

    24.(14分)已知.化简;如果、是方程的两个根,求的值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.
    考点:一次函数图象上点的坐标特征.
    2、A
    【解析】
    根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
    【详解】
    ∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
    ∴AB=BD , AC=CD ,
    ∵AB=AC ,
    ∴AB=BD=CD=AC ,
    ∴ 四边形 ABDC 是菱形;
    故选A.
    【点睛】
    本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.
    3、B
    【解析】
    根据科学记数法进行解答.
    【详解】
    1315万即13510000,用科学记数法表示为1.351×107.故选择B.
    【点睛】
    本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n(1≤│a│<10且n为整数).
    4、D
    【解析】
    根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.
    【详解】
    ①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.
    ②时,由图像可知此时,即,故②正确.
    ③由对称轴,可得,所以错误,故③错误;
    ④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.
    故答案选D.
    【点睛】
    本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
    5、B
    【解析】
    解:3400000=.
    故选B.
    6、A
    【解析】
    试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
    故选A.
    【考点】简单组合体的三视图.
    7、D
    【解析】
    设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有
    ,解得.
    故选D.
    8、C
    【解析】
    试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)
    考点:二次函数
    点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系
    9、B
    【解析】
    根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
    【详解】
    解:由于共有6个数据,
    所以中位数为第3、4个数的平均数,即中位数为=39,
    故选:B.
    【点睛】
    本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.
    10、C
    【解析】
    首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.
    【详解】
    ∵长方形ABCD中,AB∥CD,
    ∴∠BAC=∠DCA,
    又∵∠BAC=∠EAC,
    ∴∠EAC=∠DCA,
    ∴FC=AF=25cm,
    又∵长方形ABCD中,DC=AB=32cm,
    ∴DF=DC-FC=32-25=7cm,
    在直角△ADF中,AD==24(cm).
    故选C.
    【点睛】
    本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、10
    【解析】
    解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36°,因为多边形的外角和是360°,所以这个多边形的边数等于360°÷36°=10,
    故答案为:10
    12、﹣1
    【解析】
    先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.
    【详解】

    在正方形ABCD中,AB=BC,∠ABC=∠BCD,
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(SAS),
    ∴∠BAE=∠CBF,
    ∵∠CBF+∠ABF=90°
    ∴∠BAE+∠ABF=90°
    ∴∠AGB=90°
    ∴点G在以AB为直径的圆上,
    由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:
    ∵正方形ABCD,BC=2,
    ∴AO=1=OG
    ∴OD=,
    ∴DG=−1,
    故答案为−1.
    【点睛】
    本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.
    13、﹣1
    【解析】
    根据立方根、绝对值及负整数指数幂等知识点解答即可.
    【详解】
    原式= -2 -2+3= -1
    【点睛】
    本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.
    14、①②④
    【解析】
    试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
    ∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;
    ②∵和符号相同,和符号也相同,
    ∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;
    ③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
    ∵a≠c,
    ∴x2=1,解得:x=±1,错误;
    ④∵5是方程M的一个根,
    ∴25a+5b+c=0,
    ∴a+b+c=0,
    ∴是方程N的一个根,正确.
    故正确的是①②④.
    15、①②④
    【解析】
    ①根据ASA可证△BOE≌△COF,根据全等三角形的性质得到BE=CF,根据等弦对等弧得到 ,可以判断①;
    ②根据SAS可证△BOG≌△COH,根据全等三角形的性质得到∠GOH=90°,OG=OH,根据等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判断②;
    ③通过证明△HOM≌△GON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断③;
    ④根据△BOG≌△COH可知BG=CH,则BG+BH=BC=4,设BG=x,则BH=4-x,根据勾股定理得到GH== ,可以求得其最小值,可以判断④.
    【详解】
    解:①如图所示,

    ∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
    ∴∠BOE=∠COF,
    在△BOE与△COF中,

    ∴△BOE≌△COF,
    ∴BE=CF,
    ∴ ,①正确;
    ②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
    ∴△BOG≌△COH;
    ∴OG=OH,∵∠GOH=90°,
    ∴△OGH是等腰直角三角形,②正确.
    ③如图所示,

    ∵△HOM≌△GON,
    ∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;
    ④∵△BOG≌△COH,
    ∴BG=CH,
    ∴BG+BH=BC=4,
    设BG=x,则BH=4-x,
    则GH==,
    ∴其最小值为4+2,④正确.
    故答案为:①②④
    【点睛】
    考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强.
    16、1
    【解析】
    利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.
    【详解】
    ∵与相切于点,
    ∴AC⊥AB,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,
    ∴.
    故答案为1.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    17、
    【解析】
    ∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,
    ∵∠CAC′=15°,
    ∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,
    ∴阴影部分的面积=×5×tan30°×5=.

    三、解答题(共7小题,满分69分)
    18、答案见解析
    【解析】
    根据轴对称的性质作出线段AC的垂直平分线即可得.
    【详解】
    如图所示,直线EF即为所求.

    【点睛】
    本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图.
    19、(1)y=﹣,y=﹣x+2;(2)6;(3)当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
    【解析】
    (1)利用待定系数法,即可得到反比例函数和一次函数的解析式;
    (2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=×4×3=6;
    (3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.
    【详解】
    (1)如图,在Rt△OAD中,∠ADO=90°,
    ∵tan∠AOD=,AD=3,
    ∴OD=2,
    ∴A(﹣2,3),
    把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,
    所以反比例函数解析式为:y=﹣,
    把B(m,﹣1)代入y=﹣,得:m=6,
    把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,
    解得:,
    所以一次函数解析式为:y=﹣x+2;
    (2)当y=0时,﹣ x+2=0,
    解得:x=4,
    则C(4,0),
    所以;
    (3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);
    当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);
    当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),
    令y=0,得到y=﹣,即E4(﹣,0),
    综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.
    20、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).
    【解析】
    (1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.
    (2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.
    (3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.
    【详解】
    (1)将点E代入直线解析式中,
    0=﹣×4+m,
    解得m=3,
    ∴解析式为y=﹣x+3,
    ∴C(0,3),
    ∵B(3,0),
    则有,
    解得,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴D(1,4),
    设直线BD的解析式为y=kx+b,代入点B、D,

    解得,
    ∴直线BD的解析式为y=﹣2x+6,
    则点M的坐标为(x,﹣2x+6),
    ∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,
    ∴当x=时,S有最大值,最大值为.
    (3)存在,
    如图所示,

    设点P的坐标为(t,0),
    则点G(t,﹣t+3),H(t,﹣t2+2t+3),
    ∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|
    CG==t,
    ∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,
    而HG∥y轴,
    ∴HG∥CF,HG=HF,CG=CF,
    ∠GHC=∠CHF,
    ∴∠FCH=∠CHG,
    ∴∠FCH=∠FHC,
    ∴∠GCH=∠GHC,
    ∴CG=HG,
    ∴|t2﹣t|=t,
    当t2﹣t=t时,
    解得t1=0(舍),t2=4,
    此时点P(4,0).
    当t2﹣t=﹣t时,
    解得t1=0(舍),t2=,
    此时点P(,0).
    综上,点P的坐标为(4,0)或(,0).
    【点睛】
    此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.
    21、(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.
    【解析】
    (1)根据“总利润=每件的利润×每天的销量”列方程求解可得;
    (2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.
    【详解】
    解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,
    即x2﹣10x+16=0,
    解得:x1=2,x2=8,
    经检验:x1=2,x2=8,
    答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;
    (2)依题意得:y=(100﹣80﹣x)(100+10x)
    =﹣10x2+100x+2000
    =﹣10(x﹣5)2+2250,
    ∵﹣10<0,
    ∴当x=5时,y取得最大值为2250元.
    答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.
    【点睛】
    本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式.
    22、(1)OE=;(2)阴影部分的面积为
    【解析】
    (1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.
    【详解】
    解:(1) ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵OE⊥AC,
    ∴OE // BC,
    又∵点O是AB中点,
    ∴OE是△ABC的中位线,
    ∵∠D=60°,
    ∴∠B=60°,
    又∵AB=6,
    ∴BC=AB·cos60°=3,
    ∴OE= BC=;
    (2)连接OC,
    ∵∠D=60°,
    ∴∠AOC=120°,
    ∵OF⊥AC,
    ∴AE=CE,=,
    ∴∠AOF=∠COF=60°,
    ∴△AOF为等边三角形,
    ∴AF=AO=CO,
    ∵在Rt△COE与Rt△AFE中,

    ∴△COE≌△AFE,
    ∴阴影部分的面积=扇形FOC的面积,
    ∵S扇形FOC==π.
    ∴阴影部分的面积为π.

    【点睛】
    本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.
    23、木竿PQ的长度为3.35米.
    【解析】
    过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
    试题解析:
    【详解】
    解:过N点作ND⊥PQ于D,

    则四边形DPMN为矩形,
    ∴DN=PM=1.8m,DP=MN=1.1m,
    ∴,
    ∴QD==2.25,
    ∴PQ=QD+DP= 2.25+1.1=3.35(m).
    答:木竿PQ的长度为3.35米.
    【点睛】
    本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
    24、 (1) ;(2)-4.
    【解析】
    (1)先通分,再进行同分母的减法运算,然后约分得到原式
    (2)利用根与系数的关系得到 然后利用整体代入的方法计算.
    【详解】
    解:(1)

    (2)∵、是方程,
    ∴,

    【点睛】
    本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时,, 也考查了分式的加减法.

    相关试卷

    湖北省襄阳市枣阳达标名校2022年中考押题数学预测卷含解析:

    这是一份湖北省襄阳市枣阳达标名校2022年中考押题数学预测卷含解析,共19页。试卷主要包含了已知∠BAC=45,计算4+,解分式方程﹣3=时,去分母可得,下列各式中计算正确的是等内容,欢迎下载使用。

    湖北省枣阳阳光校2021-2022学年中考数学五模试卷含解析:

    这是一份湖北省枣阳阳光校2021-2022学年中考数学五模试卷含解析,共20页。试卷主要包含了已知方程组,那么x+y的值,计算36÷等内容,欢迎下载使用。

    2022年湖北省枣阳市实验中学中考试题猜想数学试卷含解析:

    这是一份2022年湖北省枣阳市实验中学中考试题猜想数学试卷含解析,共19页。试卷主要包含了我市某一周的最高气温统计如下表,下列计算中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map