终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年河北省唐山市路北区中考四模数学试题含解析

    立即下载
    加入资料篮
    2022年河北省唐山市路北区中考四模数学试题含解析第1页
    2022年河北省唐山市路北区中考四模数学试题含解析第2页
    2022年河北省唐山市路北区中考四模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年河北省唐山市路北区中考四模数学试题含解析

    展开

    这是一份2022年河北省唐山市路北区中考四模数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )

    A.(3,2) B.(3,1) C.(2,2) D.(4,2)
    2.(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为( )

    A. B. C. D.
    3.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是(  )

    A.25° B.30° C.35° D.55°
    4.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为(  )

    A.48° B.40° C.30° D.24°
    5.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?(  )

    A. B. C. D.
    6.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是(  )

    A.①② B.①③④ C.①②③⑤ D.①②③④⑤
    7.下列博物院的标识中不是轴对称图形的是( )
    A. B.
    C. D.
    8.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是(  )
    A.(1,1) B.(,) C.(1,3) D.(1,)
    9.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过(   )
    A.第一象限
    B.第二象限
    C.第三象限
    D.第四象限
    10.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为(  )
    A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×1011
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.
    12.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
    13.从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ .
    14.如图1,点P从扇形AOB的O点出发,沿O→A→B→0以1cm/s的速度匀速运动,图2是点P运动时,线段OP的长度y随时间x变化的关系图象,则扇形AOB中弦AB的长度为______cm.

    15.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.

    16.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.
    17.分解因:=______________________.
    三、解答题(共7小题,满分69分)
    18.(10分)在中,,是边的中线,于,连结,点在射线上(与,不重合)

    (1)如果
    ①如图1,   
    ②如图2,点在线段上,连结,将线段绕点逆时针旋转,得到线段,连结,补全图2猜想、之间的数量关系,并证明你的结论;
    (2)如图3,若点在线段 的延长线上,且,连结,将线段绕点逆时针旋转得到线段,连结,请直接写出、、三者的数量关系(不需证明)
    19.(5分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,,)

    20.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×
    21.(10分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
    从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).
    22.(10分)如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称, CD⊥x轴于点D,△ABD的面积为8.
    (1)求m,n的值;
    (2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.

    23.(12分)计算:(-)-2 – 2()+
    24.(14分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.
    年龄组x
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    男生平均身高y
    115.2
    118.3
    122.2
    126.5
    129.6
    135.6
    140.4
    146.1
    154.8
    162.9
    168.2
    (1)该市男学生的平均身高从   岁开始增加特别迅速.
    (2)求直线AB所对应的函数表达式.
    (3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    ∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,
    ∴=,
    ∵BG=6,
    ∴AD=BC=2,
    ∵AD∥BG,
    ∴△OAD∽△OBG,
    ∴=,
    ∴=,
    解得:OA=1,∴OB=3,
    ∴C点坐标为:(3,2),
    故选A.
    2、D
    【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=,∴S△ABE=×5×=,故选D.

    点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.
    3、C
    【解析】
    根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.
    【详解】
    解:∵直线m∥n,
    ∴∠3=∠1=25°,
    又∵三角板中,∠ABC=60°,
    ∴∠2=60°﹣25°=35°,
    故选C.

    【点睛】
    本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.
    4、D
    【解析】
    解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故选D.

    点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    5、C
    【解析】
    分析:求出扇形的圆心角以及半径即可解决问题;
    详解:∵∠A=60°,∠B=100°,
    ∴∠C=180°﹣60°﹣100°=20°,
    ∵DE=DC,
    ∴∠C=∠DEC=20°,
    ∴∠BDE=∠C+∠DEC=40°,
    ∴S扇形DBE=.
    故选C.
    点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
    6、C
    【解析】
    根据二次函数的性质逐项分析可得解.
    【详解】
    解:由函数图象可得各系数的关系:a<0,b<0,c>0,
    则①当x=1时,y=a+b+c<0,正确;
    ②当x=-1时,y=a-b+c>1,正确;
    ③abc>0,正确;
    ④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;
    ⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.
    故所有正确结论的序号是①②③⑤.
    故选C
    7、A
    【解析】
    如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.
    【详解】
    A、不是轴对称图形,符合题意;
    B、是轴对称图形,不合题意;
    C、是轴对称图形,不合题意;
    D、是轴对称图形,不合题意;
    故选:A.
    【点睛】
    此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误
    8、B
    【解析】
    根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.
    【详解】
    A选项,(1,1)到坐标原点的距离为2,因此点在圆外
    D选项(1,) 到坐标原点的距离为-1
    【解析】
    首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
    【详解】
    解:,
    ①+②得1x+1y=1m+4,
    则x+y=m+1,
    根据题意得m+1>0,
    解得m>﹣1.
    故答案是:m>﹣1.
    【点睛】
    本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.
    17、 (x-2y)(x-2y+1)
    【解析】
    根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.
    【详解】

    =x2-4xy+4y2-2y+x
    =(x-2y)2+x-2y
    =(x-2y)(x-2y+1)

    三、解答题(共7小题,满分69分)
    18、(1)①60;②.理由见解析;(2),理由见解析.
    【解析】
    (1)①根据直角三角形斜边中线的性质,结合,只要证明是等边三角形即可;
    ②根据全等三角形的判定推出,根据全等的性质得出,
    (2)如图2,求出,,求出,,根据全等三角形的判定得出,求出,推出,解直角三角形求出即可.
    【详解】
    解:(1)①∵,,
    ∴,
    ∵,
    ∴,
    ∴是等边三角形,
    ∴.
    故答案为60.
    ②如图1,结论:.理由如下:

    ∵,是的中点,,,
    ∴,,
    ∴,,,
    ∴,
    ∵,
    ∴,
    ∵线段绕点逆时针旋转得到线段,
    ∴,
    在和中

    ∴,
    ∴.
    (2)结论:.
    理由:∵,是的中点,,,
    ∴,,
    ∴,,,
    ∴,
    ∵,
    ∴,
    ∵线段绕点逆时针旋转得到线段,
    ∴,
    在和中

    ∴,
    ∴,
    而,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    即.
    【点睛】
    本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出是解此题的关键,综合性比较强,证明过程类似.
    19、 (1)AB≈1395 米;(2)没有超速.
    【解析】
    (1)先根据tan∠ADC=2求出AC,再根据∠ABC=35°结合正弦值求解即可(2)根据速度的计算公式求解即可.
    【详解】
    解:(1)∵AC⊥BC,
    ∴∠C=90°,
    ∵tan∠ADC==2,
    ∵CD=400,
    ∴AC=800,
    在Rt△ABC中,∵∠ABC=35°,AC=800,
    ∴AB==≈1395 米;
    (2)∵AB=1395,
    ∴该车的速度==55.8km/h<60千米/时,
    故没有超速.
    【点睛】
    此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.
    20、﹣1
    【解析】
    根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
    【详解】
    原式=﹣1+3﹣1×3=﹣1.
    【点睛】
    本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
    21、(1).(2)公平.
    【解析】
    试题分析:(1)首先根据题意结合概率公式可得答案;
    (2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.
    试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;
    (2)列表得:


    A

    B

    C

    D

    A



    (A,B)

    (A,C)

    (A,D)

    B

    (B,A)



    (B,C)

    (B,D)

    C

    (C,A)

    (C,B)



    (C,D)

    D

    (D,A)

    (D,B)

    (D,C)



    共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,
    ∴P(两张都是轴对称图形)=,因此这个游戏公平.
    考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.
    22、(1)m=8,n=-2;(2) 点F的坐标为,
    【解析】
    分析:(1)利用三角形的面积公式构建方程求出n,再利用 待定系数法求出m的的值即可;(2)分两种情形分别求解如①图,当k0时,设直线y=kx+b与x轴,y轴的交点分别为点,.
    详解:(1)如图②

    ∵ 点A的坐标为,点C与点A关于原点O对称,
    ∴ 点C的坐标为.
    ∵ AB⊥x轴于点B,CD⊥x轴于点D,
    ∴ B,D两点的坐标分别为,.
    ∵ △ABD的面积为8,,
    ∴ .
    解得 . ∵ 函数()的图象经过点,
    ∴ .
    (2)由(1)得点C的坐标为.
    ① 如图,当时,设直线与x轴,

    y轴的交点分别为点,.
    由 CD⊥x轴于点D可得CD∥.
    ∴ △CD∽△ O.
    ∴ .
    ∵ ,
    ∴ .
    ∴ .
    ∴ 点的坐标为.
    ②如图,当时,设直线与x轴,y轴的交点分别为
    点,.

    同理可得CD∥,.
    ∵ ,
    ∴ 为线段的中点,.
    ∴ .
    ∴ 点的坐标为.
    综上所述,点F的坐标为,.
    点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.
    23、0
    【解析】
    本题涉及负指数幂、二次根式化简和绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    原式.
    【点睛】
    本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.
    24、(1)11;(2)y=3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右.
    【解析】
    (1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把带入预测即可.
    【详解】
    解:(1)由统计图可得,
    该市男学生的平均身高从 11 岁开始增加特别迅速,
    故答案为:11;
    (2)设直线AB所对应的函数表达式
    ∵图象经过点
    则,
    解得.
    即直线AB所对应的函数表达式:
    (3)设直线CD所对应的函数表达式为:,
    ,得,
    即直线CD所对应的函数表达式为:
    把代入得
    即该市18岁男生年龄组的平均身高大约是174cm左右.
    【点睛】
    此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.

    相关试卷

    2023年河北省唐山市路北区中考数学二模试卷(含解析):

    这是一份2023年河北省唐山市路北区中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年河北省唐山市路北区中考二模数学试题(含解析):

    这是一份2023年河北省唐山市路北区中考二模数学试题(含解析),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    河北省唐山市路北区2021-2022学年中考数学仿真试卷含解析:

    这是一份河北省唐山市路北区2021-2022学年中考数学仿真试卷含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣2的值应该在,下列运算中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map