2022年广西钦州市达标名校中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )
A.a+b>0 B.a-b<0 C.<0 D.>
2.tan30°的值为( )
A. B. C. D.
3.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为 ( )
A.2 B.2 C.4 D.3
4.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为( )
A.-1或4 B.-1或-4
C.1或-4 D.1或4
5.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( )
每周做家务的时间(小时) | 0 | 1 | 2 | 3 | 4 |
人数(人) | 2 | 2 | 3 | 1 | 1 |
A.3,2.5 B.1,2 C.3,3 D.2,2
6.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是( )
A.①② B.①③ C.①④ D.①③④
7.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )
A.62° B.56° C.60° D.28°
8.如图,在下列条件中,不能判定直线a与b平行的是( )
A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
9.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )
A.30,28 B.26,26 C.31,30 D.26,22
10.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_____.
12.关于x的不等式组有2个整数解,则a的取值范围是____________.
13.如图,在梯形中,,E、F分别是边的中点,设,那么等于__________(结果用的线性组合表示).
14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.
15.如果点、是二次函数是常数图象上的两点,那么______填“”、“”或“”
16.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.
三、解答题(共8题,共72分)
17.(8分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.
18.(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
每人销售件数 | 1800 | 510 | 250 | 210 | 150 | 120 |
人数 | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.
19.(8分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
(1)选中的男主持人为甲班的频率是
(2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)
20.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.
21.(8分)先化简,再求值:,其中满足.
22.(10分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:∠G=∠CEF;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG =,AH=3,求EM的值.
23.(12分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C
处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长
(≈1.73).
24.如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.
【详解】
解:由数轴,得b<-1,0<a<1.
A、a+b<0,故A错误;
B、a-b>0,故B错误;
C、<0,故C符合题意;
D、a2<1<b2,故D错误;
故选C.
【点睛】
本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.
2、D
【解析】
直接利用特殊角的三角函数值求解即可.
【详解】
tan30°=,故选:D.
【点睛】
本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.
3、A
【解析】
连接CC′,
∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,
∴∠ADC′=∠ADC=30°,CD=C′D,
∴∠CDC′=∠ADC+∠ADC′=60°,
∴△DCC′是等边三角形,
∴∠DC′C=60°,
∵在△ABC中,AD是BC边的中线,
即BD=CD,
∴C′D=BD,
∴∠DBC′=∠DC′B=∠CDC′=30°,
∴∠BC′C=∠DC′B+∠DC′C=90°,
∵BC=4,
∴BC′=BC•cos∠DBC′=4×=2,
故选A.
【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.
4、C
【解析】
试题解析:∵x=-2是关于x的一元二次方程的一个根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得 a1=-2,a2=1.
即a的值是1或-2.
故选A.
点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
5、D
【解析】
试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数.
所以本题这组数据的中位数是1,众数是1.
故选D.
考点:1.众数;1.中位数.
6、C
【解析】
根据倒数的定义,分别进行判断即可得出答案.
【详解】
∵①1和1;1×1=1,故此选项正确;
②-1和1;-1×1=-1,故此选项错误;
③0和0;0×0=0,故此选项错误;
④−和−1,-×(-1)=1,故此选项正确;
∴互为倒数的是:①④,
故选C.
【点睛】
此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
7、A
【解析】
连接OB.
在△OAB中,OA=OB(⊙O的半径),
∴∠OAB=∠OBA(等边对等角);
又∵∠OAB=28°,
∴∠OBA=28°;
∴∠AOB=180°-2×28°=124°;
而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠C=62°;
故选A
8、C
【解析】
解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意
B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,
C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,
D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,
故选C.
【点睛】
本题考查平行线的判定,难度不大.
9、B.
【解析】
试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.
考点:中位数;加权平均数.
10、C
【解析】
由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:①根据图示知,该函数图象的开口向上,∴a>1;该函数图象交于y轴的负半轴,
∴c<1;故①正确;
②对称轴
∴ ∴b<1;
故②正确;
③根据图示知,二次函数与x轴有两个交点,所以,即,故③错误
④故本选项正确.
正确的有3项
故选C.
【点睛】
本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,
【详解】
解:∵四边形ABCD是菱形,
∴AD=AB,
∵cosA=,BE=4,DE⊥AB,
∴设AD=AB=5x,AE=3x,
则5x﹣3x=4,
x=1,
即AD=10,AE=6,
在Rt△ADE中,由勾股定理得:
在Rt△BDE中,
故答案为:1.
【点睛】
本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.
12、8⩽a<13;
【解析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解不等式3x−5>1,得:x>2,
解不等式5x−a⩽12,得:x⩽ ,
∵不等式组有2个整数解,
∴其整数解为3和4,
则4⩽<5,
解得:8⩽a<13,
故答案为:8⩽a<13
【点睛】
此题考查一元一次不等式组的整数解,掌握运算法则是解题关键
13、.
【解析】
作AH∥EF交BC于H,首先证明四边形EFHA是平行四边形,再利用三角形法则计算即可.
【详解】
作AH∥EF交BC于H.
∵AE∥FH,∴四边形EFHA是平行四边形,∴AE=HF,AH=EF.
∵AE=ED=HF,∴.
∵BC=2AD,∴2.
∵BF=FC,∴,∴.
∵.
故答案为:.
【点睛】
本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
14、
【解析】
先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.
【详解】
解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,
∴掷一次这枚骰子,向上的一面的点数为素数的概率是:.
故答案为:.
【点睛】
本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.
15、
【解析】
根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,
【详解】
解:二次函数的函数图象对称轴是x=0,且开口向上,
∴在对称轴的左侧y随x的增大而减小,
∵-3>-4,∴>.
故答案为>.
【点睛】
本题考查了二次函数的图像和数形结合的数学思想.
16、34°
【解析】
分析:首先根据垂径定理得出∠BOD的度数,然后根据三角形内角和定理得出∠D的度数.
详解:∵直径AB⊥弦CD, ∴∠BOD=2∠A=56°, ∴∠D=90°-56°=34°.
点睛:本题主要考查的是圆的垂径定理,属于基础题型.求出∠BOD的度数是解题的关键.
三、解答题(共8题,共72分)
17、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱
【解析】
试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;
(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解.
试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:
解得.
答:篮球每个50元,排球每个30元.
(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:
50m+30(20-m)≤1.
解得:m≤2.
又∵m≥8,∴8≤m≤2.
∵篮球的个数必须为整数,∴只能取8、9、2.
∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.
以上三个方案中,方案①最省钱.
点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.
18、(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件
【解析】
试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;
(2)把月销售额320件与大部分员工的工资比较即可判断.
(1)平均数件,
∵最中间的数据为210,
∴这组数据的中位数为210件,
∵210是这组数据中出现次数最多的数据,
∴众数为210件;
(2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.
考点:本题考查的是平均数、众数和中位数
点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
19、 (1) (2) ,图形见解析.
【解析】
(1)根据概率的定义即可求出;
(2)先根据题意列出树状图,再利用概率公式进行求解.
【详解】
(1)由题意P(选中的男主持人为甲班)=
(2)列出树状图如下
∴P(选中的男女主持人均为甲班的)=
【点睛】
此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.
20、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.
【解析】
(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.
【详解】
(1)设每个月生产成本的下降率为x,
根据题意得:400(1﹣x)2=361,
解得:x1=0.05=5%,x2=1.95(不合题意,舍去).
答:每个月生产成本的下降率为5%;
(2)361×(1﹣5%)=342.95(万元),
答:预测4月份该公司的生产成本为342.95万元.
【点睛】
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.
21、1
【解析】
试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.
试题解析:
原式=
∵x2−x−1=0,∴x2=x+1,
则原式=1.
22、(1)证明见解析;(2)证明见解析;(3).
【解析】
试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得,由此即可解决问题;
试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.
(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.
(3)解:如图3中,连接OC.设⊙O的半径为r.
在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.
点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.
23、简答:∵OA,
OB=OC=1500,
∴AB=(m).
答:隧道AB的长约为635m.
【解析】
试题分析:首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.
试题解析:如图,过点C作CO⊥直线AB,垂足为O,则CO="1500m"
∵BC∥OB ∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°
∴在Rt△CAO 中,OA==1500×=500m
在Rt△CBO 中,OB=1500×tan45°=1500m
∴AB=1500-500≈1500-865=635(m)
答:隧道AB的长约为635m.
考点:锐角三角函数的应用.
24、证明见解析.
【解析】
由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
证明:∵BE∥DF,∴∠ABE=∠D,
在△ABE和△FDC中,
∠ABE=∠D,AB=FD,∠A=∠F
∴△ABE≌△FDC(ASA),
∴AE=FC.
“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
2022年北京石景山达标名校中考适应性考试数学试题含解析: 这是一份2022年北京石景山达标名校中考适应性考试数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,函数的图像位于,下列计算正确的是,若分式方程无解,则a的值为等内容,欢迎下载使用。
2022年广西钦州市钦北区达标名校中考猜题数学试卷含解析: 这是一份2022年广西钦州市钦北区达标名校中考猜题数学试卷含解析,共23页。试卷主要包含了有以下图形,方程x2﹣3x=0的根是,如果一次函数y=kx+b,cs60°的值等于等内容,欢迎下载使用。
2022届广西钦州市钦南区达标名校中考数学考前最后一卷含解析: 这是一份2022届广西钦州市钦南区达标名校中考数学考前最后一卷含解析,共23页。试卷主要包含了若点P等内容,欢迎下载使用。