2022年广东省深圳市石岩公学重点中学中考一模数学试题含解析
展开
这是一份2022年广东省深圳市石岩公学重点中学中考一模数学试题含解析,共23页。试卷主要包含了的值是,一组数据,二次函数的对称轴是,下列运算结果正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是( )
A.0 B.3 C.﹣3 D.﹣7
2.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是( )
A.10 B.12 C.20 D.24
3.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为( )
A.﹣2 B.﹣1 C.1 D.2
4.的值是( )
A.1 B.﹣1 C.3 D.﹣3
5.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
6.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )
A.70° B.65° C.60° D.55°
7.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
A. B. C. D.
8.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为( )
A.(a﹣20%)元 B.(a+20%)元 C.a元 D. a元
9.二次函数的对称轴是
A.直线 B.直线 C.y轴 D.x轴
10.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
11.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,( )
A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2
C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S2
12.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是( )
A.r<5 B.r>5 C.r<10 D.5<r<10
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.27的立方根为 .
14.化简3m﹣2(m﹣n)的结果为_____.
15.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+DC的最小值是_____.
16.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
17.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.
18.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算:+-2〡+6tan30°
20.(6分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.
设,
则
即:
事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数: ,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:
我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?
计算:
某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:
已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.
21.(6分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.
(1)求抛物线y=x2﹣2x的“孪生抛物线”的表达式;
(2)若抛物线y=x2﹣2x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C′,请判断△DCC’的形状,并说明理由:
(3)已知抛物线y=x2﹣2x﹣3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由.
22.(8分)如图,是等腰三角形,,.
(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);
(2)判断是否为等腰三角形,并说明理由.
23.(8分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:
20
21
19
16
27
18
31
29
21
22
25
20
19
22
35
33
19
17
18
29
18
35
22
15
18
18
31
31
19
22
整理上面数据,得到条形统计图:
样本数据的平均数、众数、中位数如下表所示:
统计量
平均数
众数
中位数
数值
23
m
21
根据以上信息,解答下列问题:上表中众数m的值为 ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.
24.(10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:
(1)甲乙两地相距 千米,慢车速度为 千米/小时.
(2)求快车速度是多少?
(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式.
(4)直接写出两车相距300千米时的x值.
25.(10分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.
(1)若a=1,求反比例函数的解析式及b的值;
(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?
(3)若a﹣b=4,求一次函数的函数解析式.
26.(12分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.
27.(12分)(1)|﹣2|+•tan30°+(2018﹣π)0-()-1
(2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
∴y随x的增大而减小,
∴在0≤x≤5范围内,
x=0时,函数值最大﹣2×0+3=3,
故选B.
【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
2、B
【解析】
过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,
观察图象可知AB=AC=5,
∴BM==3,∴BC=2BM=6,
∴S△ABC==12,
故选B.
【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.
3、C
【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
【详解】
a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
故选C.
【点睛】
本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
4、B
【解析】
直接利用立方根的定义化简得出答案.
【详解】
因为(-1)3=-1,
=﹣1.
故选:B.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.,
5、D
【解析】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差==,
添加数字2后的方差==,
故方差发生了变化.
故选D.
6、B
【解析】
根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
【详解】
∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
∴∠AA′C=45°,
∵∠1=20°,
∴∠B′A′C=45°-20°=25°,
∴∠A′B′C=90°-25°=65°,
∴∠B=65°.
故选B.
【点睛】
本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
7、C
【解析】
严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
【详解】
根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
故选C.
【点睛】
本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
8、C
【解析】
根据题意列出代数式,化简即可得到结果.
【详解】
根据题意得:a÷(1−20%)=a÷= a(元),
故答案选:C.
【点睛】
本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.
9、C
【解析】
根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.
【详解】
解:二次函数y=x2的对称轴为y轴.
故选:C .
【点睛】
本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).
10、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
11、D
【解析】
根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.
【详解】
∵如图,在△ABC中,DE∥BC,
∴△ADE∽△ABC,
∴,
∴若1AD>AB,即时,,
此时3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能确定3S1与1S1的大小,
故选项A不符合题意,选项B不符合题意.
若1AD<AB,即时,,
此时3S1<S1+S△BDE<1S1,
故选项C不符合题意,选项D符合题意.
故选D.
【点睛】
考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.
12、D
【解析】
延长CD交⊙D于点E,
∵∠ACB=90°,AC=12,BC=9,∴AB==15,
∵D是AB中点,∴CD=,
∵G是△ABC的重心,∴CG==5,DG=2.5,
∴CE=CD+DE=CD+DF=10,
∵⊙C与⊙D相交,⊙C的半径为r,
∴ ,
故选D.
【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
找到立方等于27的数即可.
解:∵11=27,
∴27的立方根是1,
故答案为1.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
14、m+2n
【解析】分析:先去括号,再合并同类项即可得.
详解:原式=3m-2m+2n=m+2n,
故答案为:m+2n.
点睛:本题主要考查整式的加减,解题的关键是掌握去括号与合并同类项的法则.
15、(Ⅰ)AC=4 (Ⅱ)4,2.
【解析】
(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;
(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,解直角三角形即可得到结论.
【详解】
解:(Ⅰ)如图,过B作BE⊥AC于E,
∵BA=BC=4,
∴AE=CE,
∵∠A=30°,
∴AE=AB=2,
∴AC=2AE=4;
(Ⅱ)如图,作BC的垂直平分线交AC于D,
则BD=CD,此时BD+DC的值最小,
∵BF=CF=2,
∴BD=CD= =,
∴BD+DC的最小值=2,
故答案为:4,2.
【点睛】
本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.
16、4.4×1
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:44000000=4.4×1,
故答案为4.4×1.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
17、m≤1.
【解析】
由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
∴关于x的一元二次方程x1+1x+m−1=0有解,
∴△=11−4(m−1)=8−4m≥0,
解得:m≤1.
故答案为:m≤1.
【点睛】
本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.
18、=
【解析】
设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.
【详解】
解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,
由题意得:=.
故答案是:=.
【点睛】
本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、10 +
【解析】
根据实数的性质进行化简即可计算.
【详解】
原式=9-1+2-+6×
=10-
=10 +
【点睛】
此题主要考查实数的计算,解题的关键是熟知实数的性质.
20、(1)3;(2);(3)
【解析】
设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.
参照题目中的解题方法进行计算即可.
由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别分别即可求得N的值
【详解】
设塔的顶层共有盏灯,由题意得
.
解得,
顶层共有盏灯.
设,
,
即:
.
即
由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n项,
根据等比数列前n项和公式,求得每项和分别为:
每项含有的项数为:1,2,3,…,n,
总共的项数为
所有项数的和为
由题意可知:为2的整数幂,只需将−2−n消去即可,
则①1+2+(−2−n)=0,解得:n=1,总共有,不满足N>10,
②1+2+4+(−2−n)=0,解得:n=5,总共有 满足,
③1+2+4+8+(−2−n)=0,解得:n=13,总共有 满足,
④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有 不满足,
∴
【点睛】
考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.
21、(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).
【解析】
(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;
(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;
(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.
【详解】
(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,
则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;
(2)△DCC'是等腰直角三角形,理由如下:
∵抛物线y=x2-2x+c=(x-1)2+c-1,
∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),
∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),
∴CC'=c-(c-2)=2,
∵点D的横坐标为1,
∴∠CDC'=90°,
由对称性质可知DC=DC’,
∴△DCC'是等腰直角三角形;
(3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,
令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,
∴C(0,-3),A(3,0),
∵y=x2-2x-3=(x-1)2-4,
∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,
若A、C为平行四边形的对角线,
∴其中点坐标为(,−),
设P(a,-a2+2a-5),
∵A、C、P、Q为顶点的四边形为平行四边形,
∴Q(0,a-3),
∴=−,
化简得,a2+3a+5=0,△<0,方程无实数解,
∴此时满足条件的点P不存在,
若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,
∵点C和点Q在y轴上,
∴点P的横坐标为3,
把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,
∴P1(3,-8),
若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,
∴点P的横坐标为-3,
把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,
∴P2(-3,-20)
∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.
【点睛】
本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.
22、(1)作图见解析 (2)为等腰三角形
【解析】
(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.
(2)分别求出的三个角,看是否有两个角相等,进而判断是否为等腰三角形.
【详解】
(1)具体如下:
(2)在等腰中,,BD为∠ABC的平分线,故,,那么在中,
∵
∴是否为等腰三角形.
【点睛】
本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.
23、 (1)18;(2)中位数;(3)100名.
【解析】
【分析】(1)根据条形统计图中的数据可以得到m的值;
(2)根据题意可知应选择中位数比较合适;
(3)根据统计图中的数据可以计该部门生产能手的人数.
【详解】(1)由图可得,
众数m的值为18,
故答案为:18;
(2)由题意可得,
如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,
故答案为:中位数;
(3)300×=100(名),
答:该部门生产能手有100名工人.
【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.
24、(1)10, 1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣10;(4)当x=2小时或x=4小时时,两车相距300千米.
【解析】
(1)由当x=0时y=10可得出甲乙两地间距,再利用速度=两地间距÷慢车行驶的时间,即可求出慢车的速度;
(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和×相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;
(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;
(4)利用待定系数法求出当0≤x≤4时y与x之间的函数关系式,将y=300分别代入0≤x≤4时及4≤x≤时的函数关系式中求出x值,此题得解.
【详解】
解:(1)∵当x=0时,y=10,
∴甲乙两地相距10千米.
10÷10=1(千米/小时).
故答案为10;1.
(2)设快车的速度为a千米/小时,
根据题意得:4(1+a)=10,
解得:a=2.
答:快车速度是2千米/小时.
(3)快车到达甲地的时间为10÷2=(小时),
当x=时,两车之间的距离为1×=400(千米).
设当4≤x≤时,y与x之间的函数关系式为y=kx+b(k≠0),
∵该函数图象经过点(4,0)和(,400),
∴,解得:,
∴从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣10.
(4)设当0≤x≤4时,y与x之间的函数关系式为y=mx+n(m≠0),
∵该函数图象经过点(0,10)和(4,0),
∴,解得:,
∴y与x之间的函数关系式为y=﹣150x+10.
当y=300时,有﹣150x+10=300或150x﹣10=300,
解得:x=2或x=4.
∴当x=2小时或x=4小时时,两车相距300千米.
【点睛】
本题考查了待定系数法求一次函数解析式、一元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距÷慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和×相遇时间,列出关于a的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y=300时x的值.
25、 (1) 反比例函数的解析式为y=,b的值为﹣1;(1) 当x<﹣4或0<x<1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y=x+1
【解析】
(1)由题意得到A(1,4),设反比例函数的解析式为y=(k≠0),根据待定系数法即可得到反比例函数解析式为y=;再由点B(﹣4,b)在反比例函数的图象上,得到b=﹣1;
(1)由(1)知A(1,4),B(﹣4,﹣1),结合图象即可得到答案;
(3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,因为A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p=8,a=1,b=﹣1,则A(1,4),B(﹣4,﹣1),由点A、点B在一次函数y=mx+n图象上,得到,解得,即可得到答案.
【详解】
(1)若a=1,则A(1,4),
设反比例函数的解析式为y=(k≠0),
∵点A在反比例函数的图象上,
∴4=,
解得k=4,
∴反比例函数解析式为y=;
∵点B(﹣4,b)在反比例函数的图象上,
∴b==﹣1,
即反比例函数的解析式为y=,b的值为﹣1;
(1)由(1)知A(1,4),B(﹣4,﹣1),
根据图象:当x<﹣4或0<x<1时,反比例函数大于一次函数的值;
(3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,
∵A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,
∴,即,
①+②得4a﹣4b=1p,
∵a﹣b=4,
∴16=1p,
解得p=8,
把p=8代入①得4a=8,代入②得﹣4b=8,
解得a=1,b=﹣1,
∴A(1,4),B(﹣4,﹣1),
∵点A、点B在一次函数y=mx+n图象上,
∴
解得
∴一次函数的解析式为y=x+1.
【点睛】
本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.
26、证明见解析
【解析】
试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;
(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得 ,
由(1)可得 ,从而得 ,问题得证.
试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
∵E是AC的中点,
∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
又∵∠BFD=∠DFC,
∴△BFD∽△DFC,
∴BF:DF=DF:FC,
∴DF2=BF·CF;
(2)∵AE·AC=ED·DF,
∴ ,
又∵∠A=∠A,
∴△AEG∽△ADC,
∴∠AEG=∠ADC=90°,
∴EG∥BC,
∴ ,
由(1)知△DFD∽△DFC,
∴ ,
∴ ,
∴EG·CF=ED·DF.
27、(1)-1(1)-1
【解析】
(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;
(1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.
【详解】
(1)原式=1+3×+1﹣5
=1++1﹣5
=﹣1;
(1)原式=
=
=
=﹣,
解不等式组得:-1≤x
则不等式组的整数解为﹣1、0、1、1,
∵x(x+1)≠0且x﹣1≠0,
∴x≠0且x≠±1,
∴x=1,
则原式=﹣=﹣1.
【点睛】
本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.
相关试卷
这是一份2023年广东省深圳市光明区公明中学中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份精品解析:2023年广东省深圳市石岩公学中考模拟数学试题,文件包含精品解析2023年广东省深圳市石岩公学中考模拟数学试题原卷版docx、精品解析2023年广东省深圳市石岩公学中考模拟数学试题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份2023年广东省深圳市石岩公学中考模拟数学试题(含解析),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。