搜索
    上传资料 赚现金
    英语朗读宝

    2022年广东省梅州市丰顺县中考数学对点突破模拟试卷含解析

    2022年广东省梅州市丰顺县中考数学对点突破模拟试卷含解析第1页
    2022年广东省梅州市丰顺县中考数学对点突破模拟试卷含解析第2页
    2022年广东省梅州市丰顺县中考数学对点突破模拟试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广东省梅州市丰顺县中考数学对点突破模拟试卷含解析

    展开

    这是一份2022年广东省梅州市丰顺县中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了下列运算正确的是,在数轴上表示不等式2等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是(  )
    A.(0,) B.(,0) C.(0,2) D.(2,0)
    2.化简:-,结果正确的是(  )
    A.1 B. C. D.
    3.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(    )
    A.9分 B.8分 C.7分 D.6分
    4.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿 B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )

    A. B. C. D.
    5.若a=,则实数a在数轴上对应的点的大致位置是(  )

    A.点E B.点F C.点G D.点H
    6.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是(  )

    A.①②③ B.②③④ C.①③④ D.①②④
    7.下列运算正确的是(  )
    A.a12÷a4=a3 B.a4•a2=a8 C.(﹣a2)3=a6 D.a•(a3)2=a7
    8.在数轴上表示不等式2(1﹣x)<4的解集,正确的是(  )
    A. B.
    C. D.
    9.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )
    A.0.96×107 B.9.6×106 C.96×105 D.9.6×102
    10.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )

    A. B. C. D.6
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.

    12.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.

    13.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.

    14.点G是三角形ABC的重心,,,那么 =_____.
    15.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.

    16.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
    17.如图,AB是⊙O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
    (1)求点P的坐标;
    (2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
    (3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。

    19.(5分)先化简,再求值:,其中x=-5
    20.(8分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.

    (1)试探究线段AE与CG的关系,并说明理由.
    (2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
    ①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
    ②当△CDE为等腰三角形时,求CG的长.
    21.(10分)如图,ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.
    (1)求证:点F是AC的中点;
    (2)若∠A=30°,AF=,求图中阴影部分的面积.

    22.(10分)分式化简:(a-)÷
    23.(12分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.

    (1)直接写出点E的坐标(用含t的代数式表示):   ;
    (2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
    (3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
    24.(14分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.
    (1)求a和k的值;
    (2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
    【详解】

    如图,连结AC,CB.    
    依△AOC∽△COB的结论可得:OC2=OA×OB,
    即OC2=1×3=3,
    解得:OC=或− (负数舍去),
    故C点的坐标为(0, ).
    故答案选:A.
    【点睛】
    本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
    2、B
    【解析】
    先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
    【详解】

    【点睛】
    本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
    3、C
    【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
    详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,
    故答案为:C.
    点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    4、C
    【解析】
    先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.
    【详解】
    由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则
    当0<x≤2,y=x,
    当2<x≤4,y=1,
    由以上分析可知,这个分段函数的图象是C.
    故选C.
    5、C
    【解析】
    根据被开方数越大算术平方根越大,可得答案.
    【详解】
    解:∵<<,
    ∴3<<4,
    ∵a=,
    ∴3<a<4,
    故选:C.
    【点睛】
    本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<<4是解题关键.
    6、C
    【解析】
    解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;
    当P的横纵坐标相等时PA=PB,故②错误;
    ∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;
    连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;
    综上所述,正确的结论有①③④.故选C.

    点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.
    7、D
    【解析】
    分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.
    【详解】
    解:A、a12÷a4=a8,此选项错误;
    B、a4•a2=a6,此选项错误;
    C、(-a2)3=-a6,此选项错误;
    D、a•(a3)2=a•a6=a7,此选项正确;
    故选D.
    【点睛】
    本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.
    8、A
    【解析】
    根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
    去括号得:2﹣2x<4
    移项得:2x>﹣2,
    系数化为1得:x>﹣1,
    故选A.
    “点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
    9、B
    【解析】
    试题分析:“960万”用科学记数法表示为9.6×106,故选B.
    考点:科学记数法—表示较大的数.
    10、A
    【解析】
    根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.
    【详解】
    ∵在矩形ABCD中,AB=4,BC=3,F是AB中点,
    ∴BF=BG=2,
    ∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,
    ∴S1-S2=4×3-=,
    故选A.
    【点睛】
    本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.
    【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,
    ∵点D、E分别是边AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,且DE=BC,
    ∴△ADE∽△ABC,
    则=,即,
    解得:x=1,
    即四边形BCED的面积为1,
    故答案为1.
    【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.
    12、﹣24
    【解析】
    分析:
    如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.
    详解:
    如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,
    ∵四边形ABCO是菱形,
    ∴AB∥CO,AO∥BC,
    ∵DE∥AO,
    ∴四边形AOED和四边形DECB都是平行四边形,
    ∴S△AOD=S△DOE,S△BCD=S△CDE,
    ∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,
    ∵tan∠AOC=,CF=4x,
    ∴OF=3x,
    ∴在Rt△COF中,由勾股定理可得OC=5x,
    ∴OA==OC=5x,
    ∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,
    ∴OF=,CF=,
    ∴点C的坐标为,
    ∵点C在反比例函数的图象上,
    ∴k=.
    故答案为:-24.

    点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.
    13、
    【解析】
    试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴阴影部分的面积是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案为2﹣π.

    考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.
    14、.
    【解析】
    根据题意画出图形,由,,根据三角形法则,即可求得的长,又由点G是△ABC的重心,根据重心的性质,即可求得.
    【详解】
    如图:BD是△ABC的中线,
    ∵,
    ∴=,
    ∵,
    ∴=﹣,
    ∵点G是△ABC的重心,
    ∴==﹣,
    故答案为: ﹣.

    【点睛】
    本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目.
    15、50°
    【解析】
    延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.
    【详解】
    延长BF交CD于G
    由折叠知,
    BE=CF, ∠1=∠2, ∠7=∠8,
    ∴∠3=∠4.
    ∵∠1+∠2=∠3+∠4,
    ∴∠1=∠2=∠3=∠4,
    ∵CD∥AB,
    ∴∠3=∠5,
    ∴∠1=∠5,
    在△BCG和△DAE中
    ∵∠1=∠5,
    ∠C=∠A,
    BC=AD,
    ∴△BCG≌△DAE,
    ∴∠7=∠6=25°,
    ∴∠8=∠7=25°,
    ∴FDA=50°.
    故答案为50°.

    【点睛】
    本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.
    16、1
    【解析】
    设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
    【详解】
    设购买篮球x个,则购买足球个,
    根据题意得:,
    解得:.
    为整数,
    最大值为1.
    故答案为1.
    【点睛】
    本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
    17、
    【解析】
    首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用S△ADE﹣S扇形FOE=图中阴影部分的面积求出即可.
    【详解】
    解:连接OE,OF、EF,
    ∵DE是切线,
    ∴OE⊥DE,
    ∵∠C=30°,OB=OE=2,
    ∴∠EOC=60°,OC=2OE=4,
    ∴CE=OC×sin60°=
    ∵点E是弧BF的中点,
    ∴∠EAB=∠DAE=30°,
    ∴F,E是半圆弧的三等分点,
    ∴∠EOF=∠EOB=∠AOF=60°,
    ∴OE∥AD,∠DAC=60°,
    ∴∠ADC=90°,
    ∵CE=AE=
    ∴DE=,
    ∴AD=DE×tan60°=
    ∴S△ADE
    ∵△FOE和△AEF同底等高,
    ∴△FOE和△AEF面积相等,
    ∴图中阴影部分的面积为:S△ADE﹣S扇形FOE
    故答案为
    【点睛】
    此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.

    三、解答题(共7小题,满分69分)
    18、(1); (2);(3)
    【解析】
    (1)联立两直线解析式,求出交点P坐标即可;
    (2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.
    (3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.
    【详解】
    解:(1)联立得:,解得:;
    ∴P的坐标为;
    (2)分两种情况考虑:
    当时,由F坐标为(a,0),得到OF=a,
    把E横坐标为a,代入得:即
    此时
    当时,重合的面积就是梯形面积,
    F点的横坐标为a,所以E点纵坐标为
    M点横坐标为:-3a+12,

    所以;
    (3)令中的y=0,解得:x=4,则A的坐标为(4,0)
    则AP= ,则PM=2
    又∵OP=
    ∴点P向左平移3个单位在向下平移可以得到M1
    点P向右平移3个单位在向上平移可以得到M2
    ∴A向左平移3个单位在向下平移可以得到 Q1(1,-)
    A向右平移3个单位在向上平移可以得到 Q1(7,)
    所以,存在Q点,且坐标是
    【点睛】
    本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
    19、,-
    【解析】
    分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.
    详解:


    当时,原式.
    点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.
    20、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;
    理由见解析;②当△CDE为等腰三角形时,CG的长为或或.
    【解析】
    试题分析:证明≌即可得出结论.
    ①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.
    分成三种情况讨论即可.
    试题解析:(1)
    理由是:如图1,∵四边形EFGD是正方形,


    ∵四边形ABCD是正方形,


    ∴≌



    ∴ 即
    (2)①位置关系保持不变,数量关系变为
    理由是:如图2,连接EG、DF交于点O,连接OC,

    ∵四边形EFGD是矩形,

    Rt中,OG=OF,
    Rt中,

    ∴D、E、F、C、G在以点O为圆心的圆上,

    ∴DF为的直径,

    ∴EG也是的直径,
    ∴∠ECG=90°,即






    ②由①知:
    ∴设
    分三种情况:
    (i)当时,如图3,过E作于H,则EH∥AD,


    ∴ 由勾股定理得:



    (ii)当时,如图1,过D作于H,










    (iii)当时,如图5,




    综上所述,当为等腰三角形时,CG的长为或或.
    点睛:两组角对应,两三角形相似.
    21、(1)见解析;(2)
    【解析】
    (1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;
    (2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.
    【详解】
    (1)证明:连接OD、CD,如图,

    ∵BC为直径,
    ∴∠BDC=90°,
    ∵∠ACB=90°,
    ∴AC为⊙O的切线,
    ∵EF为⊙O的切线,
    ∴FD=FC,
    ∴∠1=∠2,
    ∵∠1+∠A=90°,∠2+∠3=90°,
    ∴∠3=∠A,
    ∴FD=FA,
    ∴FC=FA,
    ∴点F是AC中点;
    (2)解:在Rt△ACB中,AC=2AF=2,
    而∠A=30°,
    ∴∠CBA=60°,BC=AC=2,
    ∵OB=OD,
    ∴△OBD为等边三角形,
    ∴∠BOD=60°,
    ∵EF为切线,
    ∴OD⊥EF,
    在Rt△ODE中,DE=OD=,
    ∴S阴影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
    22、a-b
    【解析】
    利用分式的基本性质化简即可.
    【详解】
    ===.
    【点睛】
    此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.
    23、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.
    【解析】
    (1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,
    由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
    ∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
    又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
    在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
    ∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),
    (2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,
    ∴AD=t(4﹣t),
    ∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,
    ∵EG⊥x轴、FP⊥x轴,且EG=FP,
    ∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,
    ∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
    ∴当t=2时,S有最小值是16;
    (3)①假设∠FBD为直角,则点F在直线BC上,
    ∵PF=OP<AB,
    ∴点F不可能在BC上,即∠FBD不可能为直角;
    ②假设∠FDB为直角,则点D在EF上,
    ∵点D在矩形的对角线PE上,
    ∴点D不可能在EF上,即∠FDB不可能为直角;
    ③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,
    如图2,作FH⊥BD于点H,
    则FH=PA,即4﹣t=6﹣t,方程无解,
    ∴假设不成立,即△BDF不可能是等腰直角三角形.

    24、(1)a=2,k=8(2) =1.
    【解析】
    分析:(1)把A(-1,a)代入反比例函数得到A(-1,2),过A作AE⊥x轴于E,BF⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;
    (2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.
    详解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),
    ∴a=﹣=2,
    ∴A(﹣1,2),
    过A作AE⊥x轴于E,BF⊥⊥x轴于F,
    ∴AE=2,OE=1,
    ∵AB∥x轴,
    ∴BF=2,
    ∵∠AOB=90°,
    ∴∠EAO+∠AOE=∠AOE+∠BOF=90°,
    ∴∠EAO=∠BOF,
    ∴△AEO∽△OFB,
    ∴,
    ∴OF=4,
    ∴B(4,2),
    ∴k=4×2=8;
    (2)∵直线OA过A(﹣1,2),
    ∴直线AO的解析式为y=﹣2x,
    ∵MN∥OA,
    ∴设直线MN的解析式为y=﹣2x+b,
    ∴2=﹣2×4+b,
    ∴b=10,
    ∴直线MN的解析式为y=﹣2x+10,
    ∵直线MN交x轴于点M,交y轴于点N,
    ∴M(5,0),N(0,10),
    解得,,
    ∴C(1,8),
    ∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.

    点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.

    相关试卷

    2024年广东省梅州市丰顺县龙泉中学中考数学一模试卷:

    这是一份2024年广东省梅州市丰顺县龙泉中学中考数学一模试卷,共19页。

    2024年广东省梅州市丰顺县中考数学一模试卷(含解析):

    这是一份2024年广东省梅州市丰顺县中考数学一模试卷(含解析),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省梅州市丰顺县中考数学一模试卷(含解析):

    这是一份2023年广东省梅州市丰顺县中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map