|试卷下载
搜索
    上传资料 赚现金
    2022年甘肃省兰州市第四片区中考二模数学试题含解析
    立即下载
    加入资料篮
    2022年甘肃省兰州市第四片区中考二模数学试题含解析01
    2022年甘肃省兰州市第四片区中考二模数学试题含解析02
    2022年甘肃省兰州市第四片区中考二模数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年甘肃省兰州市第四片区中考二模数学试题含解析

    展开
    这是一份2022年甘肃省兰州市第四片区中考二模数学试题含解析,共22页。试卷主要包含了下面说法正确的个数有等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )

    A.10cm B.20cm C.10πcm D.20πcm
    2.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为(  )

    A.105° B.110° C.115° D.120°
    3.如图,已知是的角平分线,是的垂直平分线,,,则的长为( )

    A.6 B.5 C.4 D.
    4.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是(  )

    A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)
    5.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是(  )
    A. B. C. D.
    6.下面说法正确的个数有(  )
    ①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
    ②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
    ③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
    ④如果∠A=∠B=∠C,那么△ABC是直角三角形;
    ⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
    ⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
    A.3个 B.4个 C.5个 D.6个
    7.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
    A. B. C. D.
    8.一个几何体的三视图如图所示,这个几何体是( )

    A.三菱柱 B.三棱锥 C.长方体 D.圆柱体
    9. “车辆随机到达一个路口,遇到红灯”这个事件是( )
    A.不可能事件 B.不确定事件 C.确定事件 D.必然事件
    10.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角∠EAB=53°,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m.则篮球架横伸臂DG的长约为_____m(结果保留一位小数,参考数据:sin53°≈, cos53°≈,tan53°≈).

    12.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.

    13.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.
    14.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.

    15.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:

    其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
    16.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.

    三、解答题(共8题,共72分)
    17.(8分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.
    18.(8分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.
    (1)求证:DC=DE;
    (2)若AE=1,,求⊙O的半径.

    19.(8分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.
    (1)求证:四边形FBGH是菱形;
    (2)求证:四边形ABCH是正方形.

    20.(8分)如图,已知与抛物线C1过 A(-1,0)、B(3,0)、C(0,-3).
    (1)求抛物线C1 的解析式.
    (2)设抛物线的对称轴与 x 轴交于点 P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出 D 点坐标.

    21.(8分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.

    22.(10分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
    (1)选中的男主持人为甲班的频率是
    (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)
    23.(12分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
    在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
    24.如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).
    (1)求抛物线的解析式及其顶点D的坐标;
    (2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;
    (3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    试题解析:扇形的弧长为:=20πcm,
    ∴圆锥底面半径为20π÷2π=10cm,
    故选A.
    考点:圆锥的计算.
    2、C
    【解析】
    如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.
    【详解】
    如图,对图形进行点标注.

    ∵直线a∥b,
    ∴∠AMO=∠2;
    ∵∠ANM=∠1,而∠1=55°,
    ∴∠ANM=55°,
    ∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,
    故选C.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.
    3、D
    【解析】
    根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.
    【详解】
    ∵ED是BC的垂直平分线,
    ∴DB=DC,
    ∴∠C=∠DBC,
    ∵BD是△ABC的角平分线,
    ∴∠ABD=∠DBC,
    ∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,
    ∴∠C=∠DBC=∠ABD=30°,
    ∴BD=2AD=6,
    ∴CD=6,
    ∴CE =3,
    故选D.
    【点睛】
    本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.
    4、A
    【解析】
    由题意可知, 点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.
    【详解】
    由题意可知, 点A与点A1关于原点成中心对称,
    ∵点A的坐标是(﹣3,2),
    ∴点A关于点O的对称点A'点的坐标是(3,﹣2).
    故选A.
    【点睛】
    本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.
    5、C
    【解析】
    分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
    详解:将三个小区分别记为A、B、C,
    列表如下:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)
    由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
    所以两个组恰好抽到同一个小区的概率为.
    故选:C.
    点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    6、C
    【解析】
    试题分析:①∵三角形三个内角的比是1:2:3,
    ∴设三角形的三个内角分别为x,2x,3x,
    ∴x+2x+3x=180°,解得x=30°,
    ∴3x=3×30°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ②∵三角形的一个外角与它相邻的一个内角的和是180°,
    ∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
    ③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
    ∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
    ④∵∠A=∠B=∠C,
    ∴设∠A=∠B=x,则∠C=2x,
    ∴x+x+2x=180°,解得x=45°,
    ∴2x=2×45°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
    ∴三角形一个内角也等于另外两个内角的和,
    ∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
    ⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
    由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
    故选D.
    考点:1.三角形内角和定理;2.三角形的外角性质.
    7、A
    【解析】
    列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:
    【详解】
    列表如下:








    绿

    绿



    ﹣﹣﹣

    (红,红)

    (红,红)

    (绿,红)

    (绿,绿)



    (红,红)

    ﹣﹣﹣

    (红,红)

    (绿,红)

    (绿,红)



    (红,红)

    (红,红)

    ﹣﹣﹣

    (绿,红)

    (绿,红)

    绿

    (红,绿)

    (红,绿)

    (红,绿)

    ﹣﹣﹣

    (绿,绿)

    绿

    (红,绿)

    (红,绿)

    (红,绿)

    (绿,绿)

    ﹣﹣﹣

    ∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,
    ∴,
    故选A.
    8、A
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.
    故选:B.
    【点睛】
    此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
    9、B
    【解析】
    根据事件发生的可能性大小判断相应事件的类型即可.
    【详解】
    “车辆随机到达一个路口,遇到红灯”是随机事件.
    故选:.
    【点睛】
    本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    10、A
    【解析】
    过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
    【详解】
    过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
    ∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
    ∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
    ∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
    ∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
    故选A.

    【点睛】
    本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.1.
    【解析】
    过点D作DO⊥AH于点O,先证明△ABC∽△AOD得出=,再根据已知条件求出AO,则OH=AH-AO=DG.
    【详解】
    解:过点D作DO⊥AH于点O,如图:

    由题意得CB∥DO,
    ∴△ABC∽△AOD,
    ∴=,
    ∵∠CAB=53°,tan53°=,
    ∴tan∠CAB==,
    ∵AB=1.74m,
    ∴CB=1.31m,
    ∵四边形DGHO为长方形,
    ∴DO=GH=3.05m,OH=DG,
    ∴=,
    则AO=1.1875m,
    ∵BH=AB=1.75m,
    ∴AH=3.5m,
    则OH=AH-AO≈1.1m,
    ∴DG≈1.1m.
    故答案为1.1.
    【点睛】
    本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.
    12、或
    【解析】
    过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.
    【详解】
    如图所示,过点A作AG⊥BC,垂足为G,
    ∵AB=AC=6,∠BAC=90°,
    ∴BC==12,
    ∵AB=AC,AG⊥BC,
    ∴AG=BG=CG=6,
    设BD=x,则EC=12-DE-BD=12-5-x=7-x,
    由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,
    ∴DF=x,EF=7-x,
    在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,
    解得:x=3或x=4,
    当BD=3时,DG=3,AD=,
    当BD=4时,DG=2,AD=,
    ∴AD的长为或,
    故答案为:或.

    【点睛】
    本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.
    13、13
    【解析】
    根据同时同地物高与影长成比列式计算即可得解.
    【详解】
    解:设旗杆高度为x米,
    由题意得,,
    解得x=13.
    故答案为13.
    【点睛】
    本题考查投影,解题的关键是应用相似三角形.
    14、2
    【解析】
    只要证明△PBC是等腰直角三角形即可解决问题.
    【详解】
    解:∵∠APO=∠BPO=30°,
    ∴∠APB=60°,
    ∵PA=PC=PB,∠APC=30°,
    ∴∠BPC=90°,
    ∴△PBC是等腰直角三角形,
    ∵OA=1,∠APO=30°,
    ∴PA=2OA=2,
    ∴BC=PC=2,
    故答案为2.
    【点睛】
    本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.
    15、
    【解析】
    分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
    详解:∵平均数是12,
    ∴这组数据的和=12×7=84,
    ∴被墨汁覆盖三天的数的和=84−4×12=36,
    ∵这组数据唯一众数是13,
    ∴被墨汁覆盖的三个数为:10,13,13,


    故答案为
    点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
    16、1
    【解析】
    根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值.
    【详解】
    解:设点A的坐标为,
    过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,
    点,
    点B的坐标为,

    解得,,
    故答案为:1.
    【点睛】
    本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

    三、解答题(共8题,共72分)
    17、第二、三季度的平均增长率为20%.
    【解析】
    设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)2=14.4万元建立方程求出其解即可.
    【详解】
    设该省第二、三季度投资额的平均增长率为x,由题意,得:
    10(1+x)2=14.4,
    解得:x1=0.2=20%,x2=﹣2.2(舍去).
    答:第二、三季度的平均增长率为20%.
    【点睛】
    本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.
    18、 (1)见解析;(2).
    【解析】
    (1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC,进而∠C=∠DEC,可证结论成立;
    (2)证明△OFD∽△AFE,根据相似三角形的性质即可求出圆的半径.
    【详解】
    (1)证明:连接OD,
    由题意得:DH⊥AC,由且DH是⊙O的切线,∠ODH=∠DHA=90°,
    ∴∠ODH=∠DHA=90°,
    ∴OD∥CA,
    ∴∠C=∠ODB,
    ∵OD=OB,
    ∴∠OBD=∠ODB,
    ∴∠OBD=∠C,
    ∵∠OBD=∠DEC,
    ∴∠C=∠DEC,
    ∴DC=DE;
    (2)解:由(1)可知:OD∥AC,
    ∴∠ODF=∠AEF,
    ∵∠OFD=∠AFE,
    ∴△OFD∽△AFE,
    ∴,
    ∵AE=1,
    ∴OD=,
    ∴⊙O的半径为.

    【点睛】
    本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.
    19、(1)见解析 (2)见解析
    【解析】
    (1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;
    (2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.
    【详解】
    (1)∵点F、G是边AC的三等分点,
    ∴AF=FG=GC.
    又∵点D是边AB的中点,
    ∴DH∥BG.
    同理:EH∥BF.
    ∴四边形FBGH是平行四边形,
    连结BH,交AC于点O,
    ∴OF=OG,
    ∴AO=CO,
    ∵AB=BC,
    ∴BH⊥FG,
    ∴四边形FBGH是菱形;
    (2)∵四边形FBGH是平行四边形,
    ∴BO=HO,FO=GO.
    又∵AF=FG=GC,
    ∴AF+FO=GC+GO,即:AO=CO.
    ∴四边形ABCH是平行四边形.
    ∵AC⊥BH,AB=BC,
    ∴四边形ABCH是正方形.

    【点睛】
    本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.
    20、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )
    【解析】
    (1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;
    (2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.
    【详解】
    (1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1
    解得a=1,∴解析式为y= x2-2x-3,
    (2)如图所示,对称轴为x=1,
    过D1作D1H⊥x轴,
    ∵△CPD为等腰直角三角形,
    ∴△OPC≌△HD1P,
    ∴PH=OC=3,HD1=OP=1,∴D1(4,-1)
    过点D2F⊥y轴,同理△OPC≌△FCD2,
    ∴FD2=3,CF=1,故D2(3,- 4)
    由图可知CD1与PD2交于D3,
    此时PD3⊥CD3,且PD3=CD3,
    PC=,∴PD3=CD3=
    故D3 ( 2,- 2 )
    ∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.

    【点睛】
    此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.
    21、(1)(2)(-6,0)或(-2,0).
    【解析】
    分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.
    详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;
    (2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).
    点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.
    22、 (1) (2) ,图形见解析.
    【解析】
    (1)根据概率的定义即可求出;
    (2)先根据题意列出树状图,再利用概率公式进行求解.
    【详解】
    (1)由题意P(选中的男主持人为甲班)=
    (2)列出树状图如下
    ∴P(选中的男女主持人均为甲班的)=

    【点睛】
    此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.
    23、(1)见解析;(2)见解析;(3)见解析,.
    【解析】
    (1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
    【详解】
    解:(1)如图所示;
    (2)如图所示;(3)如图所示;CE=.

    【点睛】
    本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
    24、 (1) y=﹣(x﹣1)2+9 ,D(1,9); (2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.
    【解析】
    分析:
    (1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;
    (2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;
    (3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.
    详解:
    (1)∵抛物线y=ax2+2x+1经过点B(4,0),
    ∴16a+1+1=0,
    ∴a=﹣1,
    ∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,
    ∴D(1,9);
    (2)∵当x=0时,y=1,
    ∴C(0,1).
    设直线CD的解析式为y=kx+b.
    将点C、D的坐标代入得:,解得:k=1,b=1,
    ∴直线CD的解析式为y=x+1.
    当y=0时,x+1=0,解得:x=﹣1,
    ∴直线CD与x轴的交点坐标为(﹣1,0).
    ∵当P在直线CD上时,|PC﹣PD|取得最大值,
    ∴p=﹣1;
    (3)存在,
    理由:如图,由(2)知,C(0,1),
    ∵B(4,0),
    ∴直线BC的解析式为y=﹣2x+1,
    过点Q作QE∥y轴交BC于E,
    设Q(m,﹣m2+2m+1)(0<m<4),则点E的坐标为:(m,﹣2m+1),
    ∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,
    ∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,
    ∴m=2时,S△QBC最大,此时点Q的坐标为:(2,1).

    点睛:(1)解第2小题时,知道当点P在直线CD上时,|PC﹣PD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,﹣m2+2m+1)(0<m<4),并结合点B、C的坐标把△BCQ的面积用含m的代数式表达出来.

    相关试卷

    甘肃省兰州市兰州市教育局第四片区2023-2024学年八年级下学期期中数学试题(原卷版+解析版): 这是一份甘肃省兰州市兰州市教育局第四片区2023-2024学年八年级下学期期中数学试题(原卷版+解析版),文件包含甘肃省兰州市兰州市教育局第四片区2023-2024学年八年级下学期期中数学试题原卷版docx、甘肃省兰州市兰州市教育局第四片区2023-2024学年八年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    06,甘肃省兰州市城关区兰州市第四片区2023-2024学年九年级上学期期中数学试题: 这是一份06,甘肃省兰州市城关区兰州市第四片区2023-2024学年九年级上学期期中数学试题,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年甘肃省兰州市教育局第四片区七年级(下)期中数学试卷(含解析): 这是一份2022-2023学年甘肃省兰州市教育局第四片区七年级(下)期中数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map