


2022年福建省福州市金山中学中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
2.某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是( )
A. B. C. D.
3.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
A.若AB=CD,则四边形ABCD一定是等腰梯形;
B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
C.若,则四边形ABCD一定是矩形;
D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
4.方程x2+2x﹣3=0的解是( )
A.x1=1,x2=3 B.x1=1,x2=﹣3
C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
5.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )
A.85° B.75° C.60° D.30°
6.要使分式有意义,则x的取值范围是( )
A.x= B.x> C.x< D.x≠
7.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为( )
A.﹣12 B.﹣32 C.32 D.﹣36
8.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m1.将78000000用科学记数法表示应为( )
A.780×105 B.78×106 C.7.8×107 D.0.78×108
9.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )
A.50 B.0.02 C.0.1 D.1
10.下列各式正确的是( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.
12.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.
13.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是_____.
14.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为_____.
15.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.
16.观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是_____.
三、解答题(共8题,共72分)
17.(8分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
(1)如图1,当旋转角为90°时,求BB′的长;
(2)如图2,当旋转角为120°时,求点O′的坐标;
(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)
18.(8分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只.
(1)小张如何进货,使进货款恰好为1300元?
(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?
19.(8分)先化简,再求值:,其中x=-1.
20.(8分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站
A
B
C
D
E
X(千米)
8
9
10
11.5
13
(分钟)
18
20
22
25
28
(1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
21.(8分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.
(1)求直线AB的解析式;
(2)根据图象写出当y1>y2时,x的取值范围;
(3)若点P在y轴上,求PA+PB的最小值.
22.(10分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.
(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;
(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.
23.(12分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
24.如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线.
(1)判断直线l与圆O的关系,并说明理由;
(2)若的平分线BF交AD于点F,求证:;
(3)在(2)的条件下,若,,求AF的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
2、B
【解析】
从几何体的正面看可得下图,故选B.
3、C
【解析】
A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
故选C.
4、B
【解析】
本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.
【详解】
x2+2x-3=0,
即(x+3)(x-1)=0,
∴x1=1,x2=﹣3
故选:B.
【点睛】
本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.
5、B
【解析】
分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
详解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选B.
点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
6、D
【解析】
本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.
【详解】
∵3x−7≠0,
∴x≠.
故选D.
【点睛】
本题考查的是分式有意义的条件:当分母不为0时,分式有意义.
7、B
【解析】
解:
∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,
∴OA=5,AB∥OC,
∴点B的坐标为(8,﹣4),
∵函数y=(k<0)的图象经过点B,
∴﹣4=,得k=﹣32.
故选B.
【点睛】
本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.
8、C
【解析】
科学记数法记数时,主要是准确把握标准形式a×10n即可.
【详解】
解:78000000= 7.8×107.
故选C.
【点睛】
科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.
9、D
【解析】
所有小组频数之和等于数据总数,所有频率相加等于1.
10、A
【解析】
∵,则B错;,则C;,则D错,故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.
【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,
∵点D、E分别是边AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,且DE=BC,
∴△ADE∽△ABC,
则=,即,
解得:x=1,
即四边形BCED的面积为1,
故答案为1.
【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.
12、10°
【解析】
根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.
【详解】
∵点D、E分别是AB、AC边的垂直平分线与BC的交点,
∴AD=BD,AE=CE,
∴∠B=∠BAD,∠C=∠CAE,
∵∠B=40°,∠C=45°,
∴∠B+∠C=85°,
∴∠BAD+∠CAE=85°,
∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,
故答案为10°
【点睛】
本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
13、
【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,
∴DC=,AD=1.
由旋转的性质可知:D′C′=,AD′=1,
∴tan∠D′AC′==,
∴∠D′AC′=60°.
∴∠BAB′=30°,
∴S△AB′C′=×1×=,
S扇形BAB′==.
S阴影=S△AB′C′-S扇形BAB′=-.
故答案为-.
【点睛】
错因分析 中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.
14、3:4
【解析】
由于相似三角形的相似比等于对应中线的比,
∴△ABC与△DEF对应中线的比为3:4
故答案为3:4.
15、3.
【解析】
先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.
【详解】
∵四边形ABCD是矩形,
∴∠ADC=90°,AB=CD,
∵DE⊥AC,
∴∠AED=90°,
∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,
∴∠ADE=∠ACD,
∴tan∠ACD=tan∠ADE==,
设AD=4k,CD=3k,则AC=5k,
∴5k=5,
∴k=1,
∴CD=AB=3,
故答案为3.
【点睛】
本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.
16、
【解析】
试题解析:根据题意得,这一组数的第个数为:
故答案为
点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.
三、解答题(共8题,共72分)
17、(1)5;(2)O'(,);(3)P'(,).
【解析】
(1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;
(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;
(3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.
【详解】
解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;
(2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();
(3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.
∵点C与点A关于y轴对称,∴C(﹣3,0).
∵O'(),∴直线O'C的解析式为y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.
∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().
【点睛】
本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.
18、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
【解析】
(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;
(2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.
【详解】
(1)设A种文具进货x只,B种文具进货只,由题意得:
,
解得:x=40,
,
答:A种文具进货40只,B种文具进货60只;
(2)设购进A型文具a只,则有,且;
解得:,
∵a为整数,
∴a=48、49、50,一共有三种购货方案;
利润,
∵,w随a增大而减小,
当a=48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
【点睛】
本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.
19、解:原式=,.
【解析】
试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x的值,进行二次根式化简.
解:原式=.
当x=-1时,原式.
20、 (1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.
【解析】
(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.
【详解】
(1)设y1=kx+b,将(8,18),(9,20),代入
y1=kx+b,得:
解得
所以y1关于x的函数解析式为y1=2x+2.
(2)设李华从文化宫回到家所需的时间为y,则
y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.
所以当x=9时,y取得最小值,最小值为39.5,
答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
【点睛】
本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.
21、(1)y=﹣x+4;(2)1<x<1;(1)2.
【解析】
(1)依据反比例函数y2= (x>0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;
(2)当1<x<1时,正比例函数图象在反比例函数图象的上方,即可得到当y1>y2时,x的取值范围是1<x<1;
(1)作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,利用勾股定理即可得到BC的长.
【详解】
(1)A(1,m)、B(n,1)两点坐标分别代入反比例函数y2= (x>0),可得
m=1,n=1,
∴A(1,1)、B(1,1),
把A(1,1)、B(1,1)代入一次函数y1=kx+b,可得
,解得,
∴直线AB的解析式为y=-x+4;
(2)观察函数图象,发现:
当1<x<1时,正比例函数图象在反比例函数图象的上方,
∴当y1>y2时,x的取值范围是1<x<1.
(1)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,
过C作y轴的平行线,过B作x轴的平行线,交于点D,则
Rt△BCD中,BC=,
∴PA+PB的最小值为2.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.
22、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
【解析】
(1)根据题意可以得到y关于x的函数解析式,本题得以解决;
(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.
【详解】
(1)由题意可得,
y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,
即y与x的函数关系式为y=﹣50x+10500;
(2)由题意可得,,得x,
∵x是整数,y=﹣50x+10500,
∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,
答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
【点睛】
本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
23、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
24、(1)直线l与相切,见解析;(2)见解析;(3)AF=.
【解析】
连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此可证明直线l与相切;
先由角平分线的定义可知,然后再证明,于是可得到,最后依据等角对等边证明即可;
先求得BE的长,然后证明∽,由相似三角形的性质可求得AE的长,于是可得到AF的长.
【详解】
直线l与相切.
理由:如图1所示:连接OE.
平分,
.
,
.
,
.
直线l与相切.
平分,
.
又,
.
又,
.
.
由得.
,,
∽.
,即,解得;.
.
故答案为:(1)直线l与相切,见解析;(2)见解析;(3)AF=.
【点睛】
本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得是解题的关键.
2023年福建省福州市仓山区福州金山中学中考三模数学试题(含解析): 这是一份2023年福建省福州市仓山区福州金山中学中考三模数学试题(含解析),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年福建省福州市仓山区福州金山中学中考三模数学试题: 这是一份2023年福建省福州市仓山区福州金山中学中考三模数学试题,共6页。
2023年福建省福州市仓山区福州金山中学中考三模数学试题: 这是一份2023年福建省福州市仓山区福州金山中学中考三模数学试题,共6页。