终身会员
搜索
    上传资料 赚现金

    2022届重庆綦江长寿巴南三校联盟市级名校中考冲刺卷数学试题含解析

    立即下载
    加入资料篮
    2022届重庆綦江长寿巴南三校联盟市级名校中考冲刺卷数学试题含解析第1页
    2022届重庆綦江长寿巴南三校联盟市级名校中考冲刺卷数学试题含解析第2页
    2022届重庆綦江长寿巴南三校联盟市级名校中考冲刺卷数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届重庆綦江长寿巴南三校联盟市级名校中考冲刺卷数学试题含解析

    展开

    这是一份2022届重庆綦江长寿巴南三校联盟市级名校中考冲刺卷数学试题含解析,共23页。试卷主要包含了一元二次方程的根是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )

    A.(1,1) B.(2,1) C.(2,2) D.(3,1)
    2.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为(  )
    A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×1011
    3.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )

    A. B. C. D.
    4.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是( )

    A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
    B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
    C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
    D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
    5.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )

    A. B. C. D.1
    6.一元二次方程的根是( )
    A. B.
    C. D.
    7.把6800000,用科学记数法表示为(  )
    A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×108
    8.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

    A.3 B.4﹣ C.4 D.6﹣2
    9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是(  )

    A.1 B.2 C.3 D.4
    10.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是(  )

    A.25° B.30° C.35° D.55°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.

    12.计算()()的结果等于_____.
    13.请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)
    14.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金两、两,依题意,可列出方程为___________________ .
    15.在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.
    16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②;③PD2=PH•CD;④,其中正确的是______(写出所有正确结论的序号).

    三、解答题(共8题,共72分)
    17.(8分)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
    (1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
    (2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
    (3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)

    18.(8分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
    (1)在这项调查中,共调查了多少名学生?
    (2)将两个统计图补充完整;
    (3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

    19.(8分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=

    (1)求a,k的值及点B的坐标;
    (2)观察图象,请直接写出不等式ax﹣1≥的解集;
    (3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.
    20.(8分)如图,内接于,,的延长线交于点.

    (1)求证:平分;
    (2)若,,求和的长.
    21.(8分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

    (1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.
    (2)请将条形统计图补充完整.
    (3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
    22.(10分)先化简,再求值:﹣÷,其中a=1.
    23.(12分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
    请结合图表完成下列各题:
    (1)①表中a的值为 ,中位数在第 组;
    ②频数分布直方图补充完整;
    (2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
    (3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
    组别
    成绩x分
    频数(人数)
    第1组
    50≤x<60
    6
    第2组
    60≤x<70
    8
    第3组
    70≤x<80
    14
    第4组
    80≤x<90
    a
    第5组
    90≤x<100
    10

    24.先化简,再求值:,其中.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    直接利用已知点坐标建立平面直角坐标系进而得出答案.
    【详解】
    解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:

    ∴棋子“炮”的坐标为(2,1),
    故答案为:B.
    【点睛】
    本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
    2、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
    【详解】
    解:将546亿用科学记数法表示为:5.46×1010 ,故本题选C.
    【点睛】
    本题考查的是科学计数法,熟练掌握它的定义是解题的关键.
    3、A
    【解析】
    根据左视图的概念得出各选项几何体的左视图即可判断.
    【详解】
    解:A选项几何体的左视图为

    B选项几何体的左视图为

    C选项几何体的左视图为

    D选项几何体的左视图为

    故选:A.
    【点睛】
    本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.
    4、C
    【解析】
    Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可
    【详解】
    ∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,
    ∴DO=BC=2,CO=3,
    ∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;
    或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;
    故选:C.
    【点睛】
    本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化
    5、D
    【解析】
    试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.
    考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.
    6、D
    【解析】
    试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.
    考点:一元二次方程的解法——因式分解法——提公因式法.
    7、B
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:把6800000用科学记数法表示为6.8×1.
    故选B.
    点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、B
    【解析】
    分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
    详解:如图,当点E旋转至y轴上时DE最小;

    ∵△ABC是等边三角形,D为BC的中点,
    ∴AD⊥BC
    ∵AB=BC=2
    ∴AD=AB•sin∠B=,
    ∵正六边形的边长等于其半径,正六边形的边长为2,
    ∴OE=OE′=2
    ∵点A的坐标为(0,6)
    ∴OA=6
    ∴DE′=OA-AD-OE′=4-
    故选B.
    点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
    9、D
    【解析】
    由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①∵抛物线对称轴是y轴的右侧,
    ∴ab<0,
    ∵与y轴交于负半轴,
    ∴c<0,
    ∴abc>0,
    故①正确;
    ②∵a>0,x=﹣<1,
    ∴﹣b<2a,
    ∴2a+b>0,
    故②正确;
    ③∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    故③正确;
    ④当x=﹣1时,y>0,
    ∴a﹣b+c>0,
    故④正确.
    故选D.
    【点睛】
    本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
    10、C
    【解析】
    根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.
    【详解】
    解:∵直线m∥n,
    ∴∠3=∠1=25°,
    又∵三角板中,∠ABC=60°,
    ∴∠2=60°﹣25°=35°,
    故选C.

    【点睛】
    本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-4
    【解析】
    :由反比例函数解析式可知:系数,
    ∵S△AOB=2即,∴;
    又由双曲线在二、四象限k<0,∴k=-4
    12、4
    【解析】
    利用平方差公式计算.
    【详解】
    解:原式=()2-()2
    =7-3
    =4.
    故答案为:4.
    【点睛】
    本题考查了二次根式的混合运算.
    13、2.5×1
    【解析】
    先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
    【详解】
    1 300 000 000÷52÷1 000(千克)=25 000(千克)=2.5×1(千克).
    故答案为2.5×1.
    【点睛】
    本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.
    14、
    【解析】
    【分析】牛、羊每头各值金两、两,根据等量关系:“牛5头,羊2头,共值金10两”,“牛2头,羊5头,共值金8两”列方程组即可.
    【详解】牛、羊每头各值金两、两,由题意得:

    故答案为:.
    【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是关键.
    15、
    【解析】
    设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程.
    【详解】
    设羊价为x钱,
    根据题意可得方程:,
    故答案为:.
    【点睛】
    本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.
    16、①②③
    【解析】
    依据∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依据△DFP∽△BPH,可得,再根据BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH•CP,再根据CP=CD,即可得出PD2=PH•CD;根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积﹣△BCD的面积,即可得出.
    【详解】
    ∵PC=CD,∠PCD=30°,
    ∴∠PDC=75°,
    ∴∠FDP=15°,
    ∵∠DBA=45°,
    ∴∠PBD=15°,
    ∴∠FDP=∠PBD,
    ∵∠DFP=∠BPC=60°,
    ∴△DFP∽△BPH,故①正确;
    ∵∠DCF=90°﹣60°=30°,
    ∴tan∠DCF=,
    ∵△DFP∽△BPH,
    ∴,
    ∵BP=CP=CD,
    ∴,故②正确;
    ∵PC=DC,∠DCP=30°,
    ∴∠CDP=75°,
    又∵∠DHP=∠DCH+∠CDH=75°,
    ∴∠DHP=∠CDP,而∠DPH=∠CPD,
    ∴△DPH∽△CPD,
    ∴,即PD2=PH•CP,
    又∵CP=CD,
    ∴PD2=PH•CD,故③正确;
    如图,过P作PM⊥CD,PN⊥BC,
    设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,
    ∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
    ∴∠PCD=30°
    ∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,
    ∵S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD
    =×4×2+×2×4﹣×4×4
    =4+4﹣8
    =4﹣4,
    ∴,故④错误,
    故答案为:①②③.

    【点睛】
    本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)CF与BD位置关系是垂直,理由见解析;(2)AB≠AC时,CF⊥BD的结论成立,理由见解析;(3)见解析
    【解析】
    (1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可证△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
    (2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
    (3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=1 ,BC=3,CD=x,求线段CP的长.考虑点D的位置,分两种情况去解答.①点D在线段BC上运动,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易证△AQD∽△DCP,再根据相似三角形的性质求解问题.②点D在线段BC延长线上运动时,由∠BCA=15°,可求出AQ=CQ=1,则DQ=1+x.过A作AQ⊥BC交CB延长线于点Q,则△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根据相似三角形的性质求解问题.
    【详解】
    (1)CF与BD位置关系是垂直;
    证明如下:
    ∵AB=AC,∠ACB=15°,
    ∴∠ABC=15°.
    由正方形ADEF得AD=AF,
    ∵∠DAF=∠BAC=90°,
    ∴∠DAB=∠FAC,
    ∴△DAB≌△FAC(SAS),
    ∴∠ACF=∠ABD.
    ∴∠BCF=∠ACB+∠ACF=90°.
    即CF⊥BD.
    (2)AB≠AC时,CF⊥BD的结论成立.
    理由是:
    过点A作GA⊥AC交BC于点G,
    ∵∠ACB=15°,
    ∴∠AGD=15°,
    ∴AC=AG,
    同理可证:△GAD≌△CAF
    ∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,
    即CF⊥BD.
    (3)过点A作AQ⊥BC交CB的延长线于点Q,
    ①点D在线段BC上运动时,
    ∵∠BCA=15°,可求出AQ=CQ=1.
    ∴DQ=1﹣x,△AQD∽△DCP,
    ∴,
    ∴,
    ∴.
    ②点D在线段BC延长线上运动时,
    ∵∠BCA=15°,
    ∴AQ=CQ=1,
    ∴DQ=1+x.
    过A作AQ⊥BC,
    ∴∠Q=∠FAD=90°,
    ∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,
    ∴∠ADQ=∠AFC′,
    则△AQD∽△AC′F.
    ∴CF⊥BD,
    ∴△AQD∽△DCP,
    ∴,
    ∴,
    ∴.


    【点睛】
    综合性题型,解题关键是灵活运用所学全等、相似、正方形等知识点.
    18、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
    【解析】
    试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
    (2)先求出C的人数,再求出C的百分比即可;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
    试题解析:(1)根据题意得: 15÷30%=50(名).
    答;在这项调查中,共调查了50名学生;
    (2)图如下:

    (3)用A表示男生,B表示女生,画图如下:

    共有20种情况,同性别学生的情况是8种,
    则刚好抽到同性别学生的概率是.
    19、(1)a= ,k=3, B(-,-2) (2) ﹣≤x<0或x≥3;(3) (0,)或(0,0)
    【解析】
    1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;
    (2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;
    (3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相 似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.
    【详解】
    解:(1)
    过A作AE⊥x轴,交x轴于点E,
    在Rt△AOE中,OA=,tan∠AOC=,
    设AE=x,则OE=3x,
    根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,
    解得:x=1或x=﹣1(舍去),
    ∴OE=3,AE=1,即A(3,1),
    将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,
    将A坐标代入反比例解析式得:1=,即k=3,
    联立一次函数与反比例解析式得:,
    消去y得: x﹣1=,
    解得:x=﹣或x=3,
    将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);
    (2)由A(3,1),B(﹣,﹣2),
    根据图象得:不等式x﹣1≥的解集为﹣≤x<0或x≥3;
    (3)显然P与O重合时,△PDC∽△ODC;
    当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,
    ∵∠PCD=∠COD=90°,∠PCD=∠CDO,
    ∴△PDC∽△CDO,
    ∵∠PCO+∠CPO=90°,
    ∴∠DCO=∠CPO,
    ∵∠POC=∠COD=90°,
    ∴△PCO∽△CDO,
    ∴=,
    对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,
    ∴C(,0),D(0,﹣1),即OC=,OD=1,
    ∴=,即OP=,
    此时P坐标为(0,),
    综上,满足题意P的坐标为(0,)或(0,0).
    【点睛】
    此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.
    20、 (1)证明见解析;(2)AC= , CD= ,
    【解析】
    分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.
    本题解析:
    解:(1)证明:延长AO交BC于H,连接BO.
    ∵AB=AC,OB=OC,
    ∴A,O在线段BC的垂直平分线上.∴AO⊥BC.
    又∵AB=AC,∴AO平分∠BAC.

    (2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.
    ∴∠EBC=90°,BC⊥BE.
    ∵∠E=∠BAC,∴sinE=sin∠BAC.
    ∴=.∴CE=BC=10.
    ∴BE==8,OA=OE=CE=5.
    ∵AH⊥BC,∴BE∥OA.
    ∴=,即=,
    解得OD=.∴CD=5+=.
    ∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.
    ∴OH=BE=4,CH=BC=3.∴AH=5+4=9.
    在Rt△ACH中,AC===3.

    点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.
    21、(1)5,20,80;(2)图见解析;(3).
    【解析】
    【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;
    (2)用乒乓球的人数除以总人数即可得;
    (3)用800乘以喜欢篮球人数所占的比例即可得;
    (4)根据(1)中求得的喜欢篮球的人数即可补全条形图;
    (5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.
    【详解】(1)调查的总人数为20÷40%=50(人),
    喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);
    (2)“乒乓球”的百分比==20%;
    (3)800×=80,
    所以估计全校学生中有80人喜欢篮球项目;
    (4)如图所示,

    (5)画树状图为:

    共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=.
    22、-1
    【解析】
    原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.
    【详解】
    解:原式=﹣•2(a﹣3)
    =﹣==,
    当a=1时,原式==﹣1.
    【点睛】
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    23、(1)①12,3. ②详见解析.(2).
    【解析】
    分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;
    (2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;
    (3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.
    详解:(1)①a=50﹣(6+8+14+10)=12,
    中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,
    所以中位数落在第3组,
    故答案为12,3;
    ②如图,

    (2)×100%=44%,
    答:本次测试的优秀率是44%;
    (3)设小明和小强分别为A、B,另外两名学生为:C、D,
    则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).
    所以小明和小强分在一起的概率为:.
    点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.
    24、-1, -9.
    【解析】
    先去括号,再合并同类项;最后把x=-2代入即可.
    【详解】
    原式=, 
    当x=-2时,原式=-8-1=-9.
    【点睛】
    本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.

    相关试卷

    重庆市綦江、长寿、巴南三校联盟2021-2022学年中考数学最后一模试卷含解析:

    这是一份重庆市綦江、长寿、巴南三校联盟2021-2022学年中考数学最后一模试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列算式中,结果等于x6的是,函数的图象上有两点,,若,则等内容,欢迎下载使用。

    重庆綦江长寿巴南三校联盟市级名校2022年中考联考数学试卷含解析:

    这是一份重庆綦江长寿巴南三校联盟市级名校2022年中考联考数学试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=3,的相反数是,二次函数y=﹣等内容,欢迎下载使用。

    2022年重庆市綦江、长寿、巴南三校联盟中考押题数学预测卷含解析:

    这是一份2022年重庆市綦江、长寿、巴南三校联盟中考押题数学预测卷含解析,共19页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map