![2022届云南弥勒市重点名校十校联考最后数学试题含解析01](http://m.enxinlong.com/img-preview/2/3/13325032/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届云南弥勒市重点名校十校联考最后数学试题含解析02](http://m.enxinlong.com/img-preview/2/3/13325032/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届云南弥勒市重点名校十校联考最后数学试题含解析03](http://m.enxinlong.com/img-preview/2/3/13325032/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届云南弥勒市重点名校十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若二元一次方程组的解为则的值为( )
A.1 B.3 C. D.
2.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )
A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)
3.解分式方程﹣3=时,去分母可得( )
A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4
C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4
4.如图,已知正五边形内接于,连结,则的度数是( )
A. B. C. D.
5.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )
A.x<-2或x>2 B.x<-2或0<x<2
C.-2<x<0或0<x<2 D.-2<x<0或x>2
6.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )
A.(2,0) B.(3,0) C.(2,-1) D.(2,1)
7.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为( )
A.13 B.17 C.18 D.25
8.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A. B. C.2 D.
9.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是( )
A.70° B.80° C.110° D.140°
10.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.若代数式的值为零,则x=_____.
12.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.
13.当关于x的一元二次方程ax2+bx+c=0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”.如果关于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值为_____.
14.如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.
15.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
16.据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_____.
17.与直线平行的直线可以是__________(写出一个即可).
三、解答题(共7小题,满分69分)
18.(10分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?
19.(5分)发现
如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣ )×180°.
20.(8分)先化简,再求值:,其中x=﹣1.
21.(10分)计算:(1-n)0-|3-2 |+(- )-1+4cos30°.
22.(10分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;
(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.
23.(12分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
∵ ∴
(思考)在上述问题中,h1,h1与h的数量关系为: .
(探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
24.(14分)如图所示,一艘轮船位于灯塔P的北偏东方向与灯塔Р的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东方向上的B处.求此时轮船所在的B处与灯塔Р的距离.(结果保留根号)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
先解方程组求出,再将代入式中,可得解.
【详解】
解:
,
得,
所以,
因为
所以.
故选D.
【点睛】
本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.
2、D
【解析】
设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.
3、B
【解析】
方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.
【详解】
方程两边同时乘以(x-2),得
1﹣3(x﹣2)=﹣4,
故选B.
【点睛】
本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
4、C
【解析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.
【详解】
∵五边形为正五边形
∴
∵
∴
∴
故选:C.
【点睛】
本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.
5、D
【解析】
先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.
【详解】
解:∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B两点关于原点对称,
∵点A的横坐标为1,∴点B的横坐标为-1,
∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
∴当y1>y1时,x的取值范围是-1<x<0或x>1.
故选:D.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.
6、B
【解析】
试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
试题解析:AC=2,
则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,
则OC′=3,
故C′的坐标是(3,0).
故选B.
考点:坐标与图形变化-旋转.
7、C
【解析】
在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.
8、D
【解析】
根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.
【详解】
∵∠DAB=∠DEB,
∴tan∠DEB= tan∠DAB=,
故选D.
【点睛】
本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.
9、C
【解析】
分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.
详解:作对的圆周角∠APC,如图,
∵∠P=∠AOC=×140°=70°
∵∠P+∠B=180°,
∴∠B=180°﹣70°=110°,
故选:C.
点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
10、D
【解析】
试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.
解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,
∴△≥0,
∴4﹣4(k+1)≥0,
解得k≤0,
∵x1+x2=﹣2,x1•x2=k+1,
∴﹣2﹣(k+1)<﹣1,
解得k>﹣2,
不等式组的解集为﹣2<k≤0,
在数轴上表示为:
,
故选D.
点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、3
【解析】
由题意得,=0,解得:x=3,经检验的x=3是原方程的根.
12、1
【解析】
试题分析:设该商品每件的进价为x元,则
150×80%-10-x=x×10%,
解得 x=1.
即该商品每件的进价为1元.
故答案为1.
点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.
13、-1或-4
【解析】
分析:
设“倍根方程”的一个根为,则另一根为,由一元二次方程根与系数的关系可得,由此可列出关于m的方程,解方程即可求得m的值.
详解:
由题意设“倍根方程”的一个根为,另一根为,则由一元二次方程根与系数的关系可得:
,
∴,
∴,
化简整理得:,解得 .
故答案为:-1或-4.
点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程的两根分别为,则.
14、-1
【解析】
先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=1,最后根据AB∥OE,得出,即BC•EO=AB•CO,求得ab的值即可.
【详解】
设D(a,b),则CO=-a,CD=AB=b,
∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,
∴k=ab,
∵△BCE的面积是6,
∴×BC×OE=6,即BC×OE=1,
∵AB∥OE,
∴,即BC•EO=AB•CO,
∴1=b×(-a),即ab=-1,
∴k=-1,
故答案为-1.
【点睛】
本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法.
15、2或2.
【解析】
本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
【详解】
解:
当点在线段的延长线上时,如图3所示.
过点作于,
是正方形的对角线,
,
,
在中,由勾股定理,得:
,
在和中,,
,
,
当点在线段上时,如图4所示.
过作于.
是正方形的对角线,
,
在中,由勾股定理,得:
在和中,,
,
,
故答案为或.
【点睛】
本题主要考查了勾股定理和三角形全等的证明.
16、2.04×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
解:204000用科学记数法表示2.04×1.
故答案为2.04×1.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
17、y=-2x+5(答案不唯一)
【解析】
根据两条直线平行的条件:k相等,b不相等解答即可.
【详解】
解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).
故答案为y=2x+1.(提示:满足的形式,且)
【点睛】
本题考查了两条直线相交或平行问题.直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条直线重合.
三、解答题(共7小题,满分69分)
18、 (1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
【解析】
(1)由待定系数法即可得到函数的解析式;
(2)根据销售量×每千克利润=总利润列出方程求解即可;
(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.
【详解】
(1)设y与x之间的函数关系式为:y=kx+b,
把(2,120)和(4,140)代入得,,
解得:,
∴y与x之间的函数关系式为:y=10x+100;
(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,
解得:x=1或x=9,
∵为了让顾客得到更大的实惠,
∴x=9,
答:这种干果每千克应降价9元;
(3)该干果每千克降价x元,商贸公司获得利润是w元,
根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
∴w=﹣10(x﹣5)2+2250,
∵a=-10,∴当x=5时,
故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
【点睛】
本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.
19、(1)见解析;(2)见解析;(3)1.
【解析】
(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
【详解】
(1)如图2,延长AB交CD于E,
则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
∴∠ABC=∠A+∠C+∠D;
(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
故答案为1.
【点睛】
此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型
20、-2.
【解析】
根据分式的运算法化解即可求出答案.
【详解】
解:原式=,
当x=﹣1时,原式=.
【点睛】
熟练运用分式的运算法则.
21、1
【解析】
根据实数的混合计算,先把各数化简再进行合并.
【详解】
原式=1+3-2-3+2
=1
【点睛】
此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.
22、(1);(2)
【解析】
(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;
(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.
【详解】
解:(1)画树状图得:
共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,
所以都选择A通道通过的概率为,
故答案为:;
(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,
∴至少有两辆汽车选择B通道通过的概率为.
【点睛】
考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.
23、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
【解析】
思考:根据等腰三角形的性质,把代数式化简可得.
探究:当点M在BC延长线上时,连接,可得,化简可得.
应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
【详解】
思考
即
h1+h1=h.
探究
h1-h1=h.
理由.连接,
∵
∴
∴h1-h1=h.
应用
在中,令x=0得y=3;
令y=0得x=-4,则:
A(-4,0),B(0,3)
同理求得C(1,0),
,
又因为AC=5,
所以AB=AC,即△ABC为等腰三角形.
①当点M在BC边上时,
由h1+h1=h得:
1+My=OB,My=3-1=1,
把它代入y=-3x+3中求得:
,
∴;
②当点M在CB延长线上时,
由h1-h1=h得:
My-1=OB,My=3+1=4,
把它代入y=-3x+3中求得:
,
∴,
综上,所求点M的坐标为或.
【点睛】
本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.
24、海里
【解析】
过点P作,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB.
【详解】
解:如图,过点P作,垂足为点C.
∴,,海里.
在中,,
∴(海里).
在中,,
∴(海里).
∴此时轮船所在的B处与灯塔P的距离是海里.
【点睛】
解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
云南省重点中学2022年十校联考最后数学试题含解析: 这是一份云南省重点中学2022年十校联考最后数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图,与∠1是内错角的是,下列各式中,正确的是等内容,欢迎下载使用。
2022届湖南邵阳市城区重点名校十校联考最后数学试题含解析: 这是一份2022届湖南邵阳市城区重点名校十校联考最后数学试题含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算,正确的是等内容,欢迎下载使用。
广东省恩平市重点名校2022年十校联考最后数学试题含解析: 这是一份广东省恩平市重点名校2022年十校联考最后数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,若2<<3,则a的值可以是,下列计算正确的有个等内容,欢迎下载使用。